Preprint
Article

This version is not peer-reviewed.

Classification of Contaminated Insulators Using k-Nearest Neighbors Based on Computer Vision

A peer-reviewed article of this preprint also exists.

Submitted:

06 August 2021

Posted:

13 August 2021

You are already at the latest version

Abstract
The contamination on the insulators may increase its surface conductivity and, as a consequence, electrical discharges occur more frequently, which can lead to interruptions in the power supply. To maintain reliability in the electrical distribution power system, components that have lost their insulating properties must be replaced. Identifying the components that need maintenance, is a difficult task as there are several levels of contamination that are hardly noticed during inspections. To improve the quality of inspections, this paper proposes to use the k-nearest neighbours (k-NN) to classify the levels of insulator contamination, based on the image of insulators at various levels of contamination simulated in the laboratory. Using computer vision features such as mean, variance, asymmetry, kurtosis, energy, and entropy are used for training the k-NN. To assess the robustness of the proposed approach, statistical analysis and a comparative assessment with well-consolidated algorithms such as decision tree, ensemble subspace, and support vector machine models are presented. The k-NN showed results of up to 85.17 % accuracy using the k-fold cross-validation method, with an average accuracy higher than 82 % for multi-classification of the contamination of the insulators, being superior to the compared models.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated