Preprint
Review

This version is not peer-reviewed.

Automatic Segmentation of Pelvic Cancers using Deep Learning: State-of-the-Art Approaches and Challenges

A peer-reviewed article of this preprint also exists.

Submitted:

10 August 2021

Posted:

11 August 2021

You are already at the latest version

Abstract
The recent rise of deep learning (DL) and its promising capabilities in capturing non-explicit detail from large datasets have attracted substantial research attention in the field of medical image processing. DL provides ground for technology development for computer-aided diagnosis and segmentation in radiology and radiation oncology. Amongst the anatomical locations where recent auto-segmentation algorithms have been employed, the pelvis remains one of the most challenging due to large intra- and inter-patient soft-tissue variabilities. This review provides a comprehensive and clinically-oriented overview of DL-based segmentation studies for bladder, prostate, cervical and rectal cancers, highlighting the key findings, challenges and limitations.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated