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Abstract: The recent rise of deep learning (DL) and its promising capabilities in capturing non-ex-

plicit detail from large datasets have attracted substantial research attention in the field of medical 

image processing. DL provides ground for technology development for computer-aided diagnosis 

and segmentation in radiology and radiation oncology. Amongst the anatomical locations where 

recent auto-segmentation algorithms have been employed, the pelvis remains one of the most chal-

lenging due to large intra- and inter-patient soft-tissue variabilities. This review provides a compre-

hensive and clinically-oriented overview of DL-based segmentation studies for bladder, prostate, 

cervical and rectal cancers, highlighting the key findings, challenges and limitations. 

Keywords: Deep Learning; Pelvic Cancer Segmentation; Radiology; Radiation Oncology; Radio-

therapy Planning 

1. Introduction 

Owning to the recent rise of high-resolution imaging modalities such as X-ray computed 

tomography (CT) and magnetic resonance imaging (MRI), medical practitioners rely on 

spatial visualization of internal organs to evaluate disease and make timely clinical deci-

sions. Even though radiological assessment of imaging studies is still largely visual, based 

on domain knowledge and expertise, there is an increasing shift towards quantitative and 

volumetric disease assessment for precision medicine. This step requires accurate tissue 

segmentation, which can improve disease characterization through detection and division 

of abnormalities on images into semantically, biologically and/or clinically meaningful 

regions based on quantitative imaging measurements. Furthermore, the rapidly develop-

ing field of radiomics is also usually reliant on disease segmentation to obtain imaging 

signatures that can inform disease stratification or treatment outcomes. In radiation on-

cology, segmentation of the organs at risk (OARs) and target volumes are necessary steps 

to ensure optimal dose delivery to the tumor whilst avoiding toxicity to surrounding 

healthy tissues. 

Traditionally, segmentation is performed manually by radiologists and radiation 

oncologists, which is time-consuming [1] and it may be associated with inter- and/or intra-

operator variabilities [2,3]. In radiotherapy (RT), the time required for manual segmenta-

tion (MS) is also a rate-limiting step for adaptive radiotherapy (ART). ART is a treatment 

procedure that aims to account for temporal changes in patient anatomy and potentially 

tumor biology between each therapy fraction [4]. Furthermore, in RT clinics with limited 

resources and patient capacity, significant delays caused by MS were reported to ad-

versely affect patient admissions as well as overall survival rates [5,6]. Therefore, 
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significant research attention has been directed towards the development of fully-auto-

matic segmentation algorithms to address these shortcomings and minimize burden on 

clinicians.  

Recently, with remarkable advancements in hardware technology and the develop-

ment of powerful graphical processing units (GPUs), deep learning (DL) techniques have 

emerged as potential revolutionary solutions for clinical applications due to their capabil-

ities in learning intricate and complex features from very large medical datasets. Adoption 

of advanced DL techniques by clinics may lead to significant improvements in the current 

radiological and RT workflows. Computer-assisted segmentation technologies and their 

implementations are continuously evolving, providing the necessity for a comprehensive 

review of the state-of-the-art approaches developed for cancer diagnosis, treatment plan-

ning and response monitoring. Although previous publications have reviewed automatic 

medical image segmentation approaches [7-11] and some with particular focus in radiol-

ogy [12] and radiation oncology [13,14], few studies have surveyed the clinical value and 

potential of DL-based segmentation approaches for different types of cancer in the pelvis. 

In this review, we provide an up-to-date overview of the current DL approaches under-

taken for pelvic cancer segmentation, pinpoint key achievements and discuss limitations 

for potential adoption in the clinical practice. 

2. Background 

2.1. What is Deep Learning? 

Artificial intelligence (AI) is the concept and theory of creating an ability for machines 

to learn and accomplish human-like intelligence [15]. DL is a sub-category of AI inspired 

by the human cognition system. Unlike traditional machine learning (ML) approaches 

that rely on pre-programmed set of instructions and manually-curated input data, DL 

offers the possibility of automatic feature extraction and learning from “raw data”. Whilst 

many people perceive DL to be a 21st century invention, the first wave of research on how 

human/animal brains learn, also known as cybernetics, in fact started in the 1940s [16,17]. 

It was not until 1958 that the first fundamental component of artificial neural networks 

(ANNs), the perceptron, was developed and a single layer architecture was trained [18]. 

However, after a period of stagnation, the second wave of DL research, connectionism, 

began in the 1980s-1990s after the introduction of the backpropagation concept [19]. 

Backpropagation facilitated training of ANNs with one or two hidden layers for the first 

time. Nevertheless, due to lack of adequate computational processing power and 

increased pessimism on the real-world applications of DL in the mid-1990s, this wave of 

DL research was also short-lived. The current and third wave began in 2006 with 

development of convolutional neural networks (CNNs) [20] which allowed algorithms to 

be trained with significantly more efficiency than the traditional dense architectures (e.g. 

fully-connected networks). A key innovation in this approach was the realisation that 

sharing trained parameters (weights and biases of each perceptron) across the image 

through a convolution kernel enabled the development of much deeper networks for 

image processing than the previously available architectures [21]. Today, CNNs play a 

central role in AI design across a wide range of industries. 

2.2. Deep Learning in Oncology 

Whilst the interpretation of medical images is successfully undertaken by radiologists 

and radiation oncologists, their approach is often subjective and influenced by clinical 

experience. Depending on the prior experience, humans may not be able to fully account 

for the range of features present on scan images. This limitation can be exacerbated by the 

variable appearances of tumors in cancer patients. In recent times, AI has shown potential 
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in automatic extraction of complex image features, not necessarily visible to the human 

eye [22]. After the introduction of CNNs, DL-based approaches were rapidly deployed 

for clinical research. In oncology, major applications of DL include tumor characterization 

(detection, segmentation and staging) [23-28], clinical outcome prediction [29,30], image 

synthesis [32,33] and RT dose-response modelling [34,35]. For an in-depth overview of AI 

applications beyond autosegmentation in radiology and radiation oncology, we refer the 

readers to previous excellent studies by Boldrini et al. [13] and Meyer et al. [14]. To 

illustrate the expansion of this field, an online search with keywords “deep learning” and 

“medical image segmentation” on Google Scholar for studies published between January 

2016 to December 2020, revealed that the number of studies for DL-based segmentation 

research in medicine is rapidly rising. Additionally, the publication search with the 

additional keyword “cancer” indicated that cancer research has dictated a large 

proportion of recent DL-based medical image segmentation publications (Figure 1). 

 

Figure 1. Rapid rise in the number of publications for DL-based segmentation research in medical 

imaging where almost half of studies were cancer-related between 2016 and 2020. 

2.3. Quantitative Imaging for Cancer Diagnosis, Characterization and Assessment of Treatment 

Response 

MRI is increasingly adopted by radiologists for diagnostic and therapeutic purposes 

[35-38]. MRI is especially advantageous for pelvic cancer diagnosis, as its higher contrast-

resolution compared with CT facilitates visualization and localization of suspicious le-

sions, delineation of disease extent, and subsequently enables targeted biopsy [39] and 

therapy planning [40]. Segmentation of target pelvic organs and tumors can be used to 

render disease volume, which can be further registered with patient scans from different 

imaging modalities for treatment planning. Tumor characterization is a broad term, which 

includes diagnosis, segmentation (differentiating from non-tumor tissues), staging (dis-

ease extent) and inferring its biological behavior. These applications may be enhanced by 

quantifying imaging characteristics such as size, shape and texture. 

Tumor size measurement is important as it directs clinical decisions for the choice of 

treatment and evaluation of treatment response [41,42]. Disease monitoring is essential 

for assessing response to RT and chemotherapy treatments. The general workflow in-

cludes assessment of the tumor across longitudinal scans, and quantitative measurements 

according to predefined criteria (e.g. the Response Evaluation Criteria in Solid Tumors 

(RECIST), the World Health Organization (WHO) [43]. However, unidimensional tumor 

measurements can be limiting and volumetric assessment may be more robust. In 
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addition, functional MRI techniques can be used to derive quantitative measurements that 

reflect on different aspects of tumor biology. For example, using diffusion-weighted (DW) 

MRI, the quantitative apparent diffusion coefficient (ADC) is an imaging biomarker re-

lated to tissue cellularity and has been shown to be promising for early evaluation of treat-

ment response [44,45].  

Radiomic analysis of tumors, a voxel-wise assessment using imaging features derived 

from CT or MR images, or quantitative MRI parametric maps (e.g. ADC), has shown 

promise for evaluating tumor aggressiveness [46] and for prognostic modelling [47]. Ra-

diomics can be used to correlate phenotypical tumor characteristics to diagnostic and/or 

prognostic factors. However, applications as above are reliant on the accurate segmenta-

tion of tumors, which when undertaken manually, is both laborious and subjective [2,48]. 

Hence, automated and robust tumor segmentation tools are highly desirable for the rapid 

quantitative characterization of cancers. 

2.4. Radiotherapy Treatment (RT) Planning and Optimization 

CT remains the mainstay imaging modality for RT treatment planning due to its high 

acquisition speed, high spatial resolution and its ability to deliver relative electron density 

information. However, CT lacks the desired soft-tissue contrast for accurate delineation 

of organs and tumors where electron densities of neighboring structures are not signifi-

cantly different. Therefore, in radiation oncology, gross tumor volumes (GTVs) are some-

times derived from MRI for more accurate delineations [49]. Within a treatment planning 

system (TPS), the radiation oncologist initially identifies the target volumes and OARs. A 

series of target volumes are defined according to the criteria reported by the International 

Commission on Radiation Units and Measurements (ICRU) [50], based on initial tumor 

identification expanded to include subclinical disease and finally a planning target vol-

ume (PTV) to account for day-to-day setup variation. Consistent identification of these 

target volumes during treatment using automated segmentation frameworks could help 

to reduce the expansion margins currently employed, and therefore limit irradiation of 

normal tissue. Despite defined delineation protocols, inter-observer variation in target de-

lineation is the greatest source of uncertainty, necessitating an additional margin of error 

to be employed in creating the PTV [51]. Recently, image-guided radiation therapy (IGRT) 

techniques are increasingly attracting research attention to mitigate these shortcomings 

and allow clinicians to adapt treatment plans prior to and/or intra-fraction to objectively 

monitor the position of target volumes. In particular, ART is a potentially promising treat-

ment procedure that suits tumor sites with large inter-fraction deformability (e.g. bladder, 

cervix, prostate, rectum); it allows better sparing of the OARs from radiation toxicity. 

However, the need for redefinition of regions of interest (ROIs) for each ART fraction 

poses a significant limitation in routine treatment workflows. Thus, fast, accurate and au-

tomatic segmentation of ROIs is considered the central requirement for ART for adoption 

in clinical practice. 

2.5. Automatic Image Segmentation 

Traditional segmentation algorithms were low-level image feature extractors (e.g. in-

tensity-based and edge-based). Common methods included intensity thresholding, region 

growing and edge-detection that selected semantic image regions solely based on visual 

information from input images. Hence, more advanced mechanisms, such as uncertainty 

and optimization algorithms, were introduced to overcome the limitations associated 

with previous heuristic approaches. For instance, deformable models (e.g. active contours 

[52], level-set algorithms [53]) were developed to allow contours to expand/contract to 

include distinctive regions. The graph-based methods (e.g. graph cuts [54], watershed al-

gorithm [55]) applied the principles of game theory for segmentations based on inter-

voxel relationships. Probability-based algorithms (e.g. Bayesian classifier [56,57], Gauss-

ian mixture models, clustering, k-nearest neighbor [58], ANNs) were developed to 
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automatically assign individual voxels to different classes. However, these approaches 

lacked contextual information which led to suboptimal segmentations. Although these 

algorithms can be combined with Markov-Random Field models to alleviate this draw-

back [59], the success of these techniques are strongly correlated with manual human in-

teractions. Consequently, atlas-based approaches were proposed to incorporate prior 

knowledge in segmentation algorithms. Early atlas-based algorithms consisted of a single 

atlas (a manually defined set of regions on an existing reference image dataset) from 

which the contours from the reference image were transferred to the new image following 

deformable registration [60]. However, segmentation heavily relied on the registration ac-

curacy and organ morphology, leading to suboptimal contours especially for patients with 

unusual anatomy.  

Later approaches proposed the use of more advanced atlas selection techniques 

[61,62], selection of an atlas containing average patient anatomy information [63] and 

multi-atlas segmentation as prior knowledge [60,64]. Currently, multi-atlas algorithms are 

the most common techniques used in defining target tumor volumes [65]. Nonetheless, 

the major limitations with atlas-based methods remain the considerable computational 

and time constraints. In current oncological workflows, an array of software programs is 

available for automatic registration and segmentation of tumors using pre-defined tem-

plates and deformable contour propagations [66,67]. However, these programs are not 

suitable for pelvic cancers due to unclear boundaries between the gross tumor and sub-

clinical malignant regions [68]; tumor contouring heavily relies on clinicians’ experience. 

Recently, DL-based segmentation methods have shown enormous potential in com-

puter-assisted clinical applications due to their ability to learn complex information from 

very large datasets. Unlike traditional auto-segmentation approaches that rely on human 

defined heuristics, CNNs are able to automatically capture the pertinent information con-

tained within existing (training) datasets needed for successful segmentation. CNNs are 

generally formed by stacking several layers (e.g. convolutional/deconvolutional, fully-

connected, pooling, upsampling layers), each of which perform a key operation on the 

input images (See Figure 2a for a basic CNN classification architecture). Conventionally, 

CNNs performed pixel/voxel-wise classifications to isolate independent pixels/voxels in 

order to form ROIs from images. However, this was computationally inefficient due to 

repetitive iterations of identical convolutional operations throughout images. In 2015, 

Long et al. [69] introduced fully-convolutional networks (FCNs) to mitigate the limitations 

with fully-connected layers (final set of layers in CNN) for extracting local spatial corre-

lations. The FCN architecture includes symmetrical encoding and decoding paths which 

enable learning of both low- and high-level feature representations in images (Figure 2b). 

One of the most popular DL architectures used for medical image segmentation is UNet 

[70], which is a special type of an FCN with addition of skip connection pathways between 

encoders and decoders (Figure 2c). In recent years, many variations of UNet and FCNs 

have been published to enhance segmentation performance across a wide range of medi-

cal applications. Typical examples include 3D UNet [71], VNet [72], DeepMedic [73] and 

DeepLab [74]. Hereby, we direct the readers to [7], [9], [12] and [75] for comprehensive 

technical overview of DL architectures used in medical research. 
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Figure 2. Illustration of (a) convolutional neural networks (CNN) with fully-connected final layers 

for classification tasks, (b) fully-convolutional network (FCN) for image-to-image or image-to-

mask translations, and (c) UNet architecture with skip connections between encoder and decoder 

in the network for more efficient feature extraction/reconstruction than FCN. 

2.5.1. Evaluating the Quality and Success of Segmentation 

One of the most broadly-used metrics for comparing automatically-generated con-

tours with the ground-truth is the Dice similarity coefficient (DSC) [77]. DSC evaluates the 

overlap between two sets of contours (A and B) divided by their mean area. DSC ranges 

from 0 to 1, where higher values correspond to more accurate segmentation results (Eq. 

1). It considers both false positives and false negatives, therefore it is superior to accuracy 

which only incorporates correctly-identified pixels/voxels in images. Another variation of 

DSC reported in the literature is the surface Dice similarity coefficient (SDSC) [77] that, 

with addition of parameter τ, incorporates inter-observer variabilities in measuring the 

overlap between two surfaces. Intersection-over-union (IoU) or Jaccard index (JI) is an-

other segmentation metric reported in the literature [78] (Eq. 2). 
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One limitation associated with volume-based segmentation evaluation metrics (e.g. 

DSC, IoU) is the lack of sensitivity to the boundary of contours with potential spatial co-

location. This is especially important in radiation oncology, where the contours of adjacent 

organs/target disease volumes may signify the difference between irradiated and at-risk 

regions. Therefore, distance-based metrics are used as additional indicators to assess seg-

mented contours. The Hausdorff distance (HD) [79] is defined as follows (Eq. 3 and 4): 

 

 

 

 

where h(A,B) is the largest distance from a point in A to the nearest point in B. HD is 

generally inversely correlated with segmentation accuracy. Additionally, the mean sur-

face distance (MSD) is (Eq. 5): 

 

 

 

 

where d(a,b) corresponds to the distance between points a and b.  

 

In the following sections, we review DL-based segmentation publications for different 

cancer types within the pelvis. 

3. Methods 

The literature review in this study was conducted by initial article search from Pub-

Med/Medline and ScienceDirect databases with keywords “deep learning”, “segmenta-

tion”, “cancer”, “organs at risk”, “radiation oncology”, “radiology” and “radiotherapy”, 

and subsequent manual reference check of the relevant publications. This approach aimed 

to create a clinically-oriented overview of the DL-based pelvic segmentation algorithms 

currently used in pelvic cancers. The exclusion criteria for the retrieved publications were 

as follows: no DL segmentation techniques used; segmentation applied to sites other than 

the pelvis; no training/validation of methods on real patient data; image modalities used 

other than CT and MRI; full-articles published in languages other than English; no clinical 

application focus or published outcome. Overall, we included 74 relevant studies on blad-

der, cervical, prostate and rectal cancer segmentation applications to present a compre-

hensive review of the state-of-the-art approaches (Table 1). 

4. Literature Review 

4.1. Bladder Cancer 

DSC =  
2|A ∩ B| 

|A| + |B|
 (1) 

IoU =  
A ∩ B 

A ∪ B
 (2) 

HD(A, B) =  max (h(A, B), h(B, A)) (3) 

h(A, B) =  max
b∈B

(min
a∈A

‖a − b‖) (4) 

MSD =  
1

|A| + |B|
(∑ min

b∈B
d(a, b) + ∑ min

a∈A
d(b, a)

b∈Ba∈A

) (5) 
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Segmentation of the inner and outer bladder wall, and tumors on MRI plays an im-

portant role in diagnosis and staging of urinary bladder cancer as it provides excellent 

soft-tissue visualizations. On CT, bladder disease segmentation can provide clinicians 

with insight on cancer tumor progression and treatment response monitoring [80,81]. 

Bladder segmentation on MRI is a challenging task due to large inter-patient anatomical 

variations as well as imaging signal inhomogeneities in the urine caused by motion arte-

facts and unclear soft-tissue boundaries [82,83]. Additionally, segmentation difficulty am-

plifies with presence of cancer in the bladder. Previous studies performed automatic blad-

der segmentation using adaptive Markov-Random field [84], adaptive shape-prior con-

strained level-set [85] and statistical shape-based algorithms [86]. However, lack of gen-

eralizability due to large anatomical discrepancies in patient populations and the need for 

manual feature and parameter selection prevented their widespread clinical adoption.  

To overcome this limitation, Ma et al. [81] developed a UNet-based framework that 

improved bladder segmentation on CT compared with their previous combined CNN and 

level-set segmentation algorithm [86], particularly in lower resolution images and scans 

from patients with locally-advanced urinary bladder cancer. However, the authors re-

ported that contrast-enhanced CT images added more complexity to segmentation due to 

variable appearance of the bladder based on the effects of urine motion effect and filling 

from excreted contrast material. Xu et al. [87] proposed a 3D bladder segmentation frame-

work on CT involving a fully-connected conditional random fields recurrent neural net-

work (CRF-CNN) and fine-localized bladder probability maps; they reported that their 

approach outperformed the state-of-the-art VNet algorithm for volumetric segmentation 

of the bladder. On the other hand, only the study published by Dolz et al. [88] incorpo-

rated DL for bladder cancer segmentation on MRI. The authors developed a UNet-based 

2D framework to perform multi-region semantic bladder segmentation and reported that 

this approach outperformed traditional non-DL autosegmentation techniques. We hy-

pothesize that the paucity of published studies for use of DL in bladder cancer segmenta-

tion may be due to the lack of public and annotated datasets, as well as the lower preva-

lence of the disease compared with other pelvic cancers (see Table 1 and Figure 3). 

Table 1. Summary of previous publications using DL-based automatic segmentation separated by pelvic anatomical regions (Blad-

der: 6, Cervix: 7, Prostate: 52, Rectum: 9 studies). The DSC and IoU are shown, where reported, with the DSC metrics in bold (for 

studies with multiple test results, the metrics calculated on public/external databases are presented). For studies that reported neither 

DSC nor IoU, the metrics used by the authors are included. MRI acquisition modes (2D, 3D) were retrieved based on the information 

provided in each published article and/or supplementary documents. 

Image 

Modality 

(MR 

Acquisition 

Mode) 

Deep Learning 

Strategy 

DL 

Network 

Dimension 

Number of 

Patients 

(Train/Test) 

Segmentation Evaluation Metrics Year Reference 

Bladder Cancer 

CT UNet 2D/3D 81/92 Bladder (IoU: 0.85/0.82) 2019 [81] 

CT 
CNN + FCN (CRF-

RNN) 
3D 100/24 Bladder (DSC: 0.92) 2018 [87] 

CT CNN 2D 
62 leave-

one-out CV 
Bladder Tumor (AUC: 0.73) 2016 [80] 

CT CNN 2D 81/92 Bladder (IoU: 0.76) 2016 [86] 
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T2W (2D),  

DW (2D) MRI  

AE + modified 

residual network 

(BW-Net) 

2D 144/25 Bladder Wall (DSC: 0.85) 2020 [89] 

T2W MRI (3D) 

UNet with 

progressive dilated 

convolutions (UNet-

Progressive) 

2D 40/15 
Bladder Tumor (DSC: 0.68),  

Outer Wall (DSC: 0.83), Inner Wall (DSC: 0.98) 
2018 [88] 

Cervical Cancer 

CT 

UNet with context 

aggregation blocks 

(CabUNet) 

2D 77/14 

Bladder (DSC: 0.90), Bone Marrow (DSC: 0.85), 

L Fem. Head (DSC: 0.90), R Fem. Head (DSC: 

0.90), Rectum (DSC: 0.79), Small Intestine (DSC: 

0.83), Spinal Cord (DSC: 0.82) 

2020 [90] 

CT 
Dual path UNet 

(DpnUNet) 
2.5D 

210 five-fold 

CV 

CTV (DSC: 0.86), Bladder (DSC: 0.91), 

Bone Marrow (DSC: 0.85), L Fem. Head (DSC: 

0.90), R Fem. Head (DSC: 0.90), Rectum (DSC: 

0.82), Bowel Bag (DSC: 0.85), Spinal Cord (DSC: 

0.82) 

2020 [91] 

CT UNet 3D 100/25 

CTV (DSC: 0.86), Bladder (DSC: 0.88), 

Rectum (DSC: 0.81), L Fem. Head (DSC: 0.88), 

R Fem. Head (DSC: 0.88), Small Intestine (DSC: 

0.86) 

2020 [92] 

CT 

UNet with residual 

connection, dilated 

convolution and 

deep supervision 

(DSD-UNet) 

3D 73/18 

High-risk CTV (DSC: 0.82, IOU: 0.72), 

Bladder (DSC: 0.86, IOU: 0.77), 

Rectum (DSC: 0.82, IOU: 0.71), 

Small Intestine (DSC: 0.80, IOU: 0.69), 

Sigmoid (DSC: 0.64, IOU: 0.52) 

2020  [93] 

CT VNet 3D 

2464/140 

(+30 external 

test patients) 

Primary CTV (UteroCervix) (DSC: 0.85), 

Nodal CTV (DSC: 0.86), PAN CTV (DSC: 0.76), 

Bladder (DSC: 0.89), Rectum (DSC: 0.81), 

Spinal Cord (DSC: 0.90), L Femur (DSC: 0.94), 

R Femur (DSC: 0.93), L Kidney (DSC: 0.94), 

R Kidney (DSC: 0.95), Pelvic Bone (DSC: 0.93), 

Sacrum (DSC: 0.91), L4 Vertebral Body (DSC: 

0.91), 

L5 Vertebral Body (DSC: 0.90) 

2020 [94] 

MRI 

(unspecified) 
Mask R-CNN 2D 

5 (646 

images split 

9:1 for 

training and 

testing) 

GTV + Cervix (DSC: 0.84), Uterus (DSC: 0.92), 

Sigmoid (DSC: 0.89), Bladder (DSC: 0.90), 

Rectum (DSC: 0.89), Parametrium (DSC: 0.66), 

Vagina (DSC: 0.71), Mesorectum (DSC: 0.68), 

Femur (DSC: 0.81) 

2019 [95] 

DW MRI (2D) UNet 2D 144/25 Cervical Tumor (DSC: 0.82) 2019 [96]  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 August 2021                   doi:10.20944/preprints202108.0258.v1

https://doi.org/10.20944/preprints202108.0258.v1


 

Prostate Cancer 

CT 

UNet (External 

commercial 

software) 

2D 328/20 

Prostate (DSC: 0.79), Bladder (DSC: 0.97), 

Rectum (DSC: 0.78), Fem. Head (DSC: 0.91), 

Seminal Vesicles (DSC: 0.64) 

2020 [97] 

CT UNet 3D 900/30 

Prostate (DSC: 0.82), Bladder (DSC: 0.93), 

Rectum (DSC: 0.84), L Fem. Head (DSC: 0.68), 

R Fem. Head (DSC: 0.69),  

Lymph Nodes (DSC: 0.80), 

Seminal Vesicles (DSC: 0.72) 

2020 [98] 

CT 

High-resolution 

multi-scale encoder-

decoder network 

(HMEDN) 

2D 180/100 
Prostate (DSC: 0.88), Bladder (DSC: 0.94), 

Rectum (DSC: 0.87) 
2019 [99] 

CT/ 

Synthetic T2W 

MRI 

CT-to-MR synthesis 

+ Deep Attention 

UNet (DAUNet) 

3D 
112/28 five-

fold CV 

Prostate (DSC: 0.87), Bladder (DSC: 0.95), 

Rectum (DSC: 0.89) 
2019 [100] 

CT Modified UNet 3D 
313 five-fold 

CV 

Prostate: (DSC: 0.89), Bladder: (DSC: 0.94),  

Rectum: (DSC: 0.89) 
2019 [101] 

CT 
Deep Neural 

Network (DNN) 
3D 771/140 Prostate (DSC: 0.88) 2019 [102] 

CT 

Deeply-supervised 

attention-enabled 

boosted 

convolutional neural 

network 

(DAB-CNN) 

3D 80/20 
Prostate (DSC: 0.90), Bladder (DSC: 0.93), 

Rectum (DSC: 0.83), Penile bulb (DSC: 0.72) 
2019 [103] 

CT 

Distinctive curve 

guided fully 

convolutional 

network (FCN) 

2D 
313 five-fold 

CV 

Prostate (DSC: 0.89), Bladder (DSC: 0.94), 

Rectum (DSC: 0.89) 
2019 [104] 

CT UNet 2D 60/25 
Prostate: (DSC: 0.88), Bladder: DSC: 0.95),  

Rectum: (DSC: 0.92) 
2018 [105] 

CT 

2D UNet + 3D UNet 

with aggregated 

residual networks 

(ResNeXt) 

2D/3D 
108/28 four-

fold CV 

Prostate (DSC: 0.90), Bladder (DSC: 0.95), 

 Rectum (DSC: 0.84), L Fem. Head (DSC: 0.96),  

R Fem. Head (DSC: 0.95) 

2018 [106] 

CT 
CNN + multi-atlas 

fusion 
2D 

92 five-fold 

CV 
 Prostate (DSC: 0.86) 2017 [26] 
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CT 
FCN (based on 

LeNet) 
2D 

22 two-fold 

CV 
Prostate (DSC: 0.89) 2017 [107] 

T2W MRI (2D) 

Adversarial 

pyramid anisotropic 

convolutional deep 

neural network 

(APA-Net) 

3D 
110 three-

fold CV 
Whole Prostate Gland (DSC: 0.90) 2020 [108] 

T2W MRI 

(2D/3D) 
DeeplabV3+ 2D 40 

Prostate Central Gland (DSC: 0.81), 

Peripheral Zone (DSC: 0.70) 
2020  [109] 

T2W (2D),  

DW (2D) MRI 

Conditional GAN 

(cGAN)/Cycle-

consistent GAN 

(Cycle-GAN) 

2D 40/50 Whole Prostate Gland (DSC: 0.75) 2020  [110] 

T2W (2D),  

DW (2D) MRI 
Mask R-CNN 2D 

54/16 (+12 

external test 

patients) 

Whole Prostate Gland (DSC: 0.86), 

Prostate Tumor (DSC: 0.56) 
2020  [111] 

T2W MRI (2D) 

Boundary-weighted 

domain adaptive 

neural network 

 (BOWDA-Net) 

3D 40/146 

Whole Prostate Gland (DSC: 0.91) 

Prostate Base (DSC: 0.89) 

Prostate Apex (DSC: 0.89) 

2020 [112] 

T2W MRI (2D) 

Graph convolutional 

network 

(GCN) 

2D 
140 five-fold 

CV 
Whole Prostate Gland (DSC: 0.93) 2020  [113] 

T2W MRI (2D) Dense UNet 2D 
141/47  

four-fold CV 

Whole Prostate Gland (DSC: 0.92),  

Central Gland (DSC: 0.89),  

Peripheral Zone (DSC: 0.78) 

2020  [114] 

T2W MRI (2D) UNet/Pix2pix 2D 
40 four-fold 

CV 

Prostate Central Gland (DSC: 0.86-0.88), 

Peripheral Zone (DSC: 0.90-0.83) 
2020  [115] 

T1W (3D), T2W 

(unspecified) 

MRI 

Multi-scale 

DeepMedic 
3D 

97/53 three-

fold CV 

Bladder (DSC: 0.96), Rectum (DSC: 0.88), 

L femur (DSC: 0.97), R femur (DSC: 0.97) 
2020 [116] 

T2W MRI (2D) 

Cascaded dual 

attention network 

(CDA-Net) 

3D 40/109 Whole Prostate Gland (DSC: 0.92) 2020  [117] 

T2W MRI (2D) 

Encoder-Decoder 

structure with dense 

dilated spatial 

pyramid pooling 

(DDSPP) 

2D 150 Whole Prostate Gland (DSC: 0.95) 2019 [118] 
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T2W (2D),  

DW (2D) MRI  
Mask R-CNN 2D 

36 (split 

7:2:1 for 

training, 

validation 

and testing) 

Whole Prostate Gland (IoU: 0.84),  

Prostate Tumor (IoU: 0.40),  

Central Gland (IoU: 0.78),  

Peripheral Zone (IoU: 0.51) 

2019  [119] 

T2W (2D), 

DW (2D) MRI  
UNet 2D 100/125 

Whole Prostate Gland (DSC: 0.84), 

Central Gland (DSC: 0.78), 

Peripheral Zone (DSC: 0.69) 

2019 [120] 

T2W MRI (2D) 

FCN with feature 

pyramid attention 

 

2D 

250/63 (+46 

external test 

patients) 

Prostate Transition Zone (DSC: 0.79), 

Peripheral zone (DSC: 0.74) 
2019  [121] 

T2W MRI (3D) 

Spatially-varying 

stochastic residual 

adversarial network 

(STRAINet) 

3D 
50 five-fold 

CV 

Whole Prostate Gland (DSC: 0.91), 

Bladder (DSC: 0.97), Rectum (DSC: 0.91) 
2019 [122] 

T2W MRI (2D) 
UNet with 

“combo loss” 
3D 700/258 Whole Prostate Gland (DSC: 0.91) 2019 [123] 

 T2W MRI 

(unspecified) 
DeepLabV3+ 2D 40/50 

CTV (DSC: 0.83), Bladder (DSC: 0.93), 

Rectum (DSC: 0.82), Penile Bulb (DSC: 0.74),  

Urethra (DSC: 0.69), Rectal Spacer (DSC: 0.81) 

2019 [124] 

T2W MRI (2D) 
VNet + variational 

methods 
3D 85 Whole Prostate Gland (DSC: 0.64) 2019 [125] 

T2W MRI (2D) 

Propagation Deep 

Neural Network  

(P-DNN) 

2D 50/30 Whole Prostate Gland: (DSC: 0.84) 2019 [126] 

T2W (2D),  

DW (2D) MRI 
Cascaded UNet 2D 76/51 

Whole Prostate Gland (DSC: 0.92), 

Peripheral zone (DSC: 0.79) 
2019 [127] 

T2W MRI (3D) Multi-view CNN 2D 
19 leave-

one-out 

Prostate Tumor (DSC: 0.92, IoU: 0.67), 

Prostate Central Gland (IoU: 0.65), 

Peripheral Zone (IoU: 0.59) 

2019  [128] 

T2W MRI (2D) 

Investigative CNN 

study (UNet, VNet, 

HighRes3dNet, 

HolisticNet, Dense 

VNet, Adapted 

UNet) 

3D 173/59 Whole Prostate Gland (DSC: 0.87) 2019  [129] 

T2W MRI (2D) ZNet 2D 45/30 Whole Prostate Gland (DSC: 0.90) 2019  [130] 
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T2W MRI (3D) FCN 3D 60/10 
Whole Prostate Gland (DSC: 0.89),  

Bladder (DSC: 0.95), Rectum (DSC: 0.88) 
2018 [131] 

T2W MRI (2D) SegNet 2D 

16/5 (+19 

external test 

patients) 

Whole Prostate Gland (DSC: 0.75) 2018  [132] 

T2W MRI (2D) 
CNN + Boundary 

Detection 
3D 

50 five-fold 

CV 
Whole Prostate Gland (DSC: 0.90) 2018  [133] 

DCE MRI (3D) UNet + LSTM 3D 
(15/2) three-

fold CV 
Whole Prostate Gland (DSC: 0.86) 2018  [134] 

T2W MRI (2D) FCN 2D 50/30 Whole Prostate Gland (DSC: 0.87) 2018 [135] 

T2W MRI (2D) CNN 2D 20 Whole Prostate Gland (DSC: 0.85) 2018 [25] 

T2W MRI (2D) CNN (PSNet) 3D 
112/28 five-

fold CV 
Whole Prostate Gland (DSC: 0.85) 2018 [24] 

T2W (2D), 

DW (2D) MRI 

Deep dense  

multi-path CNN 
3D 

100/50 (+30 

external test 

patients) 

Whole Prostate Gland (DSC: 0.95) 2018 [136] 

T2W MRI (2D) UNet 3D 26 Whole Prostate Gland (DSC: 0.88) 2018 [137] 

T2W MRI (2D) 
Deeply-supervised 

CNN 
2D 77/4 Whole Prostate Gland (DSC: 0.89) 2017 [138] 

T2W (2D), 

DW (2D) MRI 
AE 2D 

21 leave-

one-out CV 

Prostate Tumor (SBE: 0.89, sensitivity: 91%, 

specificity: 88%) 
2017 [139] 

T2W MRI (2D) 
Holistically-nested 

FCN 
2D 

250 five-fold 

CV 
Whole Prostate Gland (DSC: 0.89, IoU: 0.81) 2017 [140] 

DW MRI (2D) 
Modified UNet with 

inception blocks 
2D 

141 four-

fold CV 

Whole Prostate Gland (DSC: 0.93), 

Transition Zone (DSC: 0.88) 
2017  [141] 

T2W MRI (2D) 

ConvNet with 

mixed residual 

connections 

3D 50/30 Whole Prostate Gland (DSC: 0.87) 2017 [142] 
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T2W MRI (2D) 

Stacked Sparse AE 

(SSAE) + Sparse 

patch matching 

2D 
66 two-fold 

CV 
Whole Prostate Gland (DSC: 0.87) 2016 [143] 

T2W MRI (2D) VNet 3D 50/30 Whole Prostate Gland (DSC: 0.87) 2016  [72] 

T2W MRI 

(unspecified) 

Stacked 

independent 

subspace analysis 

(ISA) 

2D 
30 leave-

one-out CV 
Whole Prostate Gland (DSC: 0.86) 2013 [144] 

Rectal Cancer 

CT DeepLabV3+ 2D 98/63 

CTV (DSC: 0.88), Bladder (DSC: 0.90), 

Small Intestine (DSC: 0.76),  

L Fem. Head (DSC: 0.93), 

R Fem. Head (DSC: 0.93) 

2020 [27] 

CT 

CNN with cascaded 

atrous convolution 

(CAC) and spatial 

pyramid pooling 

module (SPP) 

2D 

100  

five-fold CV 
Rectal Tumor (DSC: 0.78) 

2018  [145] 

T2W MRI (2D) 
70 

five-fold CV 
CTV (DSC: 0.85) 

CT 

Dilated CNN  

(transfer learning 

from VGG-16) 

2D 218/60 

CTV (DSC: 0.87), Bladder (DSC: 0.93), 

L Fem. Head (DSC: 0.92), R Fem. Head (DSC: 

0.92), 

Intestine (DSC: 0.65), Colon (DSC: 0.62) 

2017 [146] 

T2W (2D), 

DW (2D) MRI 
Mask R-CNN 2D 

293/31 (+50 

external test 

patients) 

Lymph Nodes (DSC: 0.81) 2020  [147] 

T2W MRI (2D) 

CNN (transfer 

learning from 

ResNet50) 

2D 461/107 Rectal Tumor (DSC: 0.82) 2019 [148] 

T2W MRI (3D) UNet 2D 
93 ten-fold 

CV 
Rectal GTV (DSC: 0.74, IoU: 0.60) 2018 [149] 

T2W MRI (2D) 

FCN (transfer 

learning from VGG-

16) 

2D 410/102 Rectal Tumor (DSC: 0.84) 2018 [23] 

T2W MRI (2D) 
Hybrid loss FCN 

(HL-FCN) 
3D 

64 four-fold 

CV 
Rectal Tumor (DSC: 0.72) 2018 [150] 
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T2W 

(unspecified),

DW (2D) MRI 

CNN 2D 70/70 Rectal Tumor (DSC: 0.69) 2017 [151] 

Abbreviations: AE, Auto-Encoder; AUC, Area under the ROC Curve; CT, Computed Tomography; CTV, Clinical Target Volume; CV, Cross-Valida-
tion; DCE, Dynamic Contrast-Enhanced; DSC, Dice Similarity Coefficient; DWI, Diffusion-Weighted Imaging; GTV, Gross Tumor Volume; LSTM, 

Long-Short-Term Memory; MRI, Magnetic Resonance Imaging; SBE: Section-Based Evaluation. 

 
Figure 3. Boxplot of number of training patients used in segmentation applications for bladder (CT 

studies :4, MRI studies: 2), cervical (CT:2, MRI:5), prostate (CT:12, MRI:40) and rectal (CT:2, MRI:6, 

CT/MRI:1) cancers. The average number of training patients was 165 from the 74 reviewed studies. 

The outliers were excluded from this figure for visualization purposes. 

4.2. Cervical Cancer 

Segmentation of cervical tumors remains a challenging task due to large geometrical 

variations in patient populations and indistinctive soft-tissue boundaries. Previous stud-

ies have reported the utility of DW-MRI and ADC for cervical cancer staging, histological 

grading and nodal status evaluations [152]. Although there is growing interest in quanti-

tative assessment of tumors in radiology, to date, only one previous study by Lin et al. 

[96] incorporated the use of DL for automatic segmentation and radiomic feature extrac-

tions of cervical tumors from ADC maps. The authors demonstrated that their UNet-

based segmentation framework outperformed previous ML techniques by a factor of two, 

potentially providing clinicians with an automated tool to minimize tumor delineation 

(GTV equivalent) discrepancies. Moreover, Breto et al. [97] developed a Mask R-CNN 

framework for automatic segmentation of OARs and GTVs for MR-only RT treatment 

planning for patients with locally advanced cervical cancer. The authors reported that 

whilst the generated contours for cervix, rectum, bladder, uterus, femur and sigmoid were 

in good agreement with expert MS, their network underperformed for segmenting 

smaller and less distinctive soft-tissue structures such as the vagina, parametrium and the 

mesorectum. However, their results were only based on 5 test patients and not clinically 

validated. The considerable segmentation complexities in cervical cancer as well as lack 

of high-quality and annotated databases may have also contributed to the low numbers 

of studies for DL-based segmentation of cervical tumors on MRI (Table 1).  

In the RT literature, Wang et al. [92] proposed a 3D UNet model for CTV (which typ-

ically encompasses the tumor, cervix, uterus, ovaries and parametria) and OAR delinea-

tions on CT from 25 patients, and suggested that their automatic contours were as accurate 

as MS performed by a clinical resident with 8 months experience. Liu et al. [153] devel-

oped a 3D UNet-based architecture for segmentation of OARs and reported that over 90% 
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of their generated contours were ‘highly acceptable’ for RT planning through expert on-

cologist evaluation (>15 years of experience). However, this network underperformed for 

CTV delineations. In a later study, the authors developed a dual-path UNet network 

(DpnUNet) consisting of more hidden layers in order to make it more suitable for CTV 

segmentations where tissue boundaries are unclear. However, despite promising segmen-

tation results their framework was only evaluated on patient scans from a single institu-

tion. In contrast, Rhee et al. [94] used a VNet model to generate CT treatment plans and 

reported that their algorithm achieved on average 80%, 97% and 90% clinical acceptance 

rate for primary CTVs, OARs and bony structures respectively. Their framework was val-

idated on 30 cervical cancer patients scanned across three hospitals. The list of the publi-

cations for cervical cancer segmentation studies is shown in Table 1. 

4.3. Prostate Cancer 

Previous review studies have investigated various automatic segmentation ap-

proaches. However, only one previous study published by Almeida and Tavares [11] pro-

vided a systematic review of advances in prostate segmentation which included 28 pub-

lications for studies until 2019 (CT: 9, MRI: 19). This study provides an up-to-date review 

of 52 publications on prostate and/or prostate cancer segmentation (CT: 12, MRI: 40) (see 

Table 1). Based on our literature search, it is apparent that in recent years the clinical at-

tention for segmentation of the prostate cancer has gravitated towards MRI due to its un-

paralleled soft-tissue contrast. There remains limited literature for automatic segmenta-

tion of the prostate cancer itself, in part because of the technical challenges imposed by 

the relatively small size of the tumors, background changes with the prostate gland, also 

because major treatments (e.g. RT) are usually directed towards the whole prostate gland 

rather than the focal disease. However, as automated decision support tools for prostate 

cancer diagnosis in MRI are being developed, together with internal radiation boost for 

prostate cancer and other focal therapies become more widely used, prostate cancer seg-

mentation will become increasingly important. 

At present, whole prostate gland (WG), central gland (CG), transition zone (TZ) and 

peripheral zone (PZ) segmentations have been developed to aid disease assessment ad 

prostate cancer staging [154]. WG segmentation is also the basis for RT planning. Earlier 

prostate zonal segmentation algorithms included active appearance [155], continuous 

max-flow [156] and C-means algorithms [157]. However, these techniques failed to gen-

eralize to patient populations from multiple institutions. Due to high clinical demand and 

technology advancement, DL rapidly found its way into prostate segmentation research. 

Amongst the MRI-based prostate segmentation studies in our review, 33 studies per-

formed segmentation of WG. However, from these publications only 8 studies also inves-

tigated CG, TZ and PZ segmentations [109,114,115,119-121,128,141]. It was observed in 

these studies that WG segmentation accuracy was superior to PZ and TZ due to large 

anatomical variations and indistinguishable soft-tissue boundaries. Additionally, only 4 

studies provided results on prostate cancer segmentation on MRI [111,119,128,139] (see 

Table 1). 

From the 40 reviewed MRI-based prostate segmentation publications, 32 and 4 used 

2D and 3D imaging data for training their DL networks respectively, whilst one study 

used a combination of 2D and 3D input MRI to train their segmentation algorithms. Ad-

ditionally, the MR imaging acquisition mode was unspecified for one or all MRI contrasts 

in 3 studies. Although using volumetric images for training incorporates vital spatial in-

formation for organs, it requires considerable computational resources to facilitate train-

ing. One advantage of training DL algorithms with 2D convolutional kernels is the ability 

to use knowledge transfer (transfer learning) from previous models trained on natural 

images in order to achieve greater segmentation performance. Tian et al. [24] proposed a 

variant of FCN called PSNet, and through transfer learning achieved satisfactory results. 

Zhu et al. [138] developed a CNN with deep supervision to better capture multi-level 
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feature maps. Attempting to investigate the performance of generative adversarial net-

works (GANs), Birbiri et al. [110] proposed a conditional GAN (cGAN) and reported that 

their algorithm with a UNet generator outperformed the standalone UNet model. On the 

other hand, benefiting from volumetric model training, Milletari et al. [72] developed a 

3D CNN called VNet to perform prostate gland segmentation. Feng et al. [131] used a 

multi-task FCN for training in a semi-supervised manner to overcome lack of adequate 

training data. Zhu et al. [112] proposed a boundary-weighted strategy to enforce feature 

learning at the base and apex in prostate from a limited training dataset.  

The considerable difficulty in automatic delineation of pelvic organs have inspired 

the introduction of various segmentation challenges. These include PROMISE12 [158], 

ASPS13 [159] and PROSTATEx [160]. Amongst the reviewed articles in this study, 28 pub-

lications used public datasets for network training and/or validation. For example, Yu et 

al. [161] developed a 3D CNN with mixed long and short residual connections that ena-

bled high training efficiency and superior feature learning capability from small training 

datasets. This framework outperformed other proposed algorithms in the PROMISE12 

challenge in 2018. Moreover, Brosch et al. [133] developed a framework containing regres-

sion-based boundary detection and CNN-based prediction of the distance between a sur-

face mesh and its associated boundary point which ranked first place in the PROMISE12 

challenge in 2019. Geng et al. [118] proposed an encoder-decoder architecture with dense 

dilated pyramidal pooling, and after validating their technique on PROMISE12 and 

ASPS13 datasets reported that their framework outperformed the then state-the-of-art al-

gorithms for segmentation. Dai et al. [111] developed a region-based CNN (Mask R-CNN) 

and suggested that their approach was able to perform end-to-end segmentation of the 

prostate as well as the highly suspicious lesions from the PROSTATEx repository. Based 

on our literature research, it is evident that the introduction of segmentation challenges 

along with public and annotated databases for prostate cancer have encouraged research 

from the wider ML community. The list of available databases and publications for pros-

tate segmentation are shown in Table 2. 

Table 2. Public datasets available for prostate cancer segmentation along with the studies that their results were evaluated on these 

databases. T1W: T1-weighted; T2W: T2-weighted; DW: Diffusion-weighted; PDW: Proton density-weighted; DCE: Dynamic contrast-

enhanced; MRSI: Magnetic resonance spectroscopic imaging. 

Dataset 

Image Modality 

(MRI Acquisition 

Mode) 

Number of 

Patients 

Ground-Truth 

Contours 
URL Studies 

PROMISE12 

[158] 
T2W MRI (2D) 80 Whole Prostate Gland 

https://promise12.grand-

challenge.org/ 

[24, 108, 110, 112, 

113, 117, 118, 122, 

124–127, 130, 135–

137, 141, 142, 162] 

I2CVB [163] 

T2W (2D/3D), 

DW (2D), 

DCE (3D),  

MRSI (3D) MRI  

40 

Whole Prostate Gland, 

Peripheral Zone, 

Central Gland, 

Prostate Tumor 

https://i2cvb.github.io/ 
 [109, 119, 128, 132, 

134, 164] 

BWH [165] 
T1W (2D/3D), 

T2W (2D) MRI  
230 Whole Prostate Gland https://prostatemrimagedatabase.com/ [112, 125] 
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ASPS13 [159] 

T1W (2D),  

T2W (2D),  

DCE (3D) MRI 

156 
Whole Prostate Gland, 

Peripheral Zone 

https://wiki.cancerimagingarchive.net/

display/Public/NCI-

ISBI+2013+Challenge+-

+Automated+Segmentation+of+Prostat

e+Structures 

[24, 108, 117, 118] 

PROSTATEx 

[160] 

T2W (2D),  

DW (2D),  

PDW (3D),  

DCE (3D) MRI  

330 

(malignant 

lesions: 76, 

benign 

lesions: 245) 

Prostate Tumor https://prostatex.grand-challenge.org/ [114, 119, 121, 123] 

PROMISE12: MICCAI Grand Prostate MR Image Segmentation 2012; I2CVB: Initiative for Collaborative Computer Vision Benchmarking; BWH: The Brigham 
and Women’s Hospital Database; ASPS13: NCI-ISBI 2013 Challenge for Automatic Segmentation of Prostate Structures; PROSTATEx: SPIE-AAPM-NCI 

Prostate MR Classification Challenge. 

 

 

Traditionally, OARs and segmentation for RT planning in prostate cancer were per-

formed using volumetric deformable model surface [166], organ-specific modelling [167] 

and atlas-based techniques [67]. However, contouring through these techniques were 

poor for patients with abnormal anatomy and data from external institutions, hence hin-

dering the possibility of their integration for online adaptive treatments. Therefore, recent 

studies have employed DL-based algorithms to develop more efficient, generalizable and 

consistent segmentation pipelines. The current RT planning workflow uses CT for ROI 

contouring and radiation dose estimations. Hence, despite poor soft-tissue contrast, seg-

mentation on CT remains desirable. Ma et al. [26] proposed a framework combining a 2D 

CNN with multi-atlas label fusion to segment ROIs on CT. To enhance algorithm feature 

learning capability, Balagopal et al. [106] used a 2D-3D hybrid UNet model containing 

aggregated residual networks (ResNeXt) and achieved an average DSC of 0.9. However, 

this was only based on ground-truth data defined by one expert. Wang et al. [101] pro-

posed a 3D FCN with boundary sensitive representations for enhanced organ-specific fea-

ture learning and verified their results based on data from 313 patients acquired from 

multiple CT scanners. On the other hand, Dong et al. [168] used a Cycle Generative Ad-

versarial Network (Cycle-GAN) to generate synthetic MRI from CT to enhance their algo-

rithm’s soft-tissue learning capability. However, the impact of registration for contour 

propagations from MRI to CT was not reported. MRI-only RT planning was also proposed 

to mitigate these geometrical uncertainties. To the best of our knowledge, there are no 

public CT databases for prostate segmentation and RT planning. 

4.3. Rectal Cancer 

MRI is the technique of choice for the diagnosis and preoperative staging of rectal 

cancer [171]. MRI is more accurate in the diagnosis, staging and treatment planning of 

rectal cancer compared with CT, and also provides quantitative tumor assessment, which 

can inform treatment response assessment and disease outcomes [170]. Although in recent 

years numerous studies were published for automatic contouring of pelvic tumors 

[94,171-174], only a few were reported to address rectal cancer [27,146,175]. Based on our 

article search, 9 studies incorporated DL for rectal cancer segmentation applications (CT: 

2, MRI: 6, MRI/CT: 1) (Table 1). Trebeschi et al. [151] published the first CNN-based rectal 

tumor segmentation study on multi-parametric MRI. Their framework included classifi-

cation of fixed patches and segmentation of the identified voxels. Although this approach 

was designed to reduce image redundancy, it ignored context information which ad-

versely affected their network’s generalizability in cross-institution model evaluations. 

Huang et al. [150] developed a volumetric hybrid loss fully-convolutional network (HL-
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FCN) that used Dice-based loss to overcome class imbalance in their training data, how-

ever their results were not clinically evaluated. Jian et al. [23] proposed an FCN-based 

segmentation framework and used transfer learning (VGG-16) to outperform the conven-

tional UNet architecture for rectal tumor segmentation on MRI. Similarly, Wang et al. 

[148] deployed an FCN model from a pre-trained ResNet50 model to enrich hierarchical 

feature extraction during network training. The authors evaluated their results on 107 pa-

tients from four centers and reported that their network was superior than UNet for tumor 

contouring. Unfortunately, due to shortage of public databases, direct and meaningful 

comparison of these algorithms for rectal cancer segmentation remains a challenging task.  

To date, only three studies were published on uses of DL for rectal cancer RT treat-

ment planning on CT images. Men et al. [146] proposed a 2D CNN with dilated convolu-

tions and suggested that their network outperformed the traditional UNet architecture. 

However, the authors reported that their model failed to accurately perform colon and 

intestine segmentations due to large inter-patient anatomical variabilities and inhomoge-

neous distribution of the contrast material and gas in these structures. Song et al. [27] in-

vestigated DeepLabv3+ and ResUNet architectures for OARs and CTV segmentations and 

suggested that whilst automatic contouring using these models outperformed the frame-

work proposed by Men et al. [146], they offered different advantages for feature extraction 

and contouring of pelvic structures. Whilst ResUNet was reported to be an effective algo-

rithm for segmenting visually distinctive structures (e.g. femoral heads, bones), 

DeepLabv3+ achieved superior segmentation performances for soft-tissues with unclear 

boundaries (e.g. bladder/small intestine). Their results were in line with a later study by 

Men et al. [145] who employed cascaded convolutions along with spatial pyramid pooling 

(SPP) to enhance CTV delineations. However, both of these techniques were based on 2D 

training which disregards the inter-slice spatial information of OARs and tumor volumes 

for training. 

3. Discussion 

MRI is increasingly used for the diagnosis, staging and treatment response evalua-

tions of pelvic cancers. Owning to the remarkable advances in imaging technologies and 

computer processing hardware, imaging diagnostics for cancer disease characterization, 

treatment assessment and patient follow-up are evolving. Quantitative imaging tech-

niques are showing promise in providing information that can enhance the understanding 

of diseases and support patient care. For instance, multi-parametric MRI that combines 

one or more functional MR sequences is now widely used for pelvic tumors. In recent 

years, DW-MRI has been widely regarded as a reliable quantitative imaging technique 

that can provide more sensitive disease detection and for the early assessment of treat-

ment response [176]. However, DW-MRI suffers from geometric distortions due to the use 

of an echo-planar imaging (EPI) sequence which hinders its use for RT planning. With 

recent introduction of magnetic resonance fingerprinting (MRF) [177], simultaneous 

quantitative assessment of tissues on MRI without these geometric limitations may even-

tually become viable. Radiomics, which aims to provide additional insight from scan im-

ages that may not be quantified using conventional assessments, has shown potential in 

directing distinct imaging phenotypes as indicators for biological behavior, therapeutic 

responses and treatment outcomes [178]. Accurate segmentation of OARs and the GTV 

are also vital for effective image-guided RT treatment. These applications demand increas-

ing levels of manual workload for ROI delineations which may also be subject to inter- 

and/or intra-operator variabilities [2], thus encouraging the rapid development of com-

puter-assisted and automated technologies. 

With recent remarkable rise of AI and specifically DL, substantial research attention 

has been directed towards bridging the gap between computer vision and patient care. In 

this review, we presented an overview of the recent DL-based autosegmentation algo-

rithms used in bladder, cervical, prostate and rectal cancers from 74 studies. While these 
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studies were proposed to address the key challenges faced in radiation oncology and ra-

diology, the major limitation with cancer tumor segmentation on MRI remains the diffi-

culty in confidently identifying abnormal structures from healthy tissues due to highly 

variable inter-patient geometrical appearance and potentially poorly-defined soft-tissue 

boundaries. CT is widely used as the desired imaging modality for radiation dose estima-

tions and RT treatment planning. However, the inadequate soft-tissue contrast on CT ne-

cessitates the concurrent adoption of MRI for enhanced visualization of pelvic structures 

to improve the accuracy of tumor definition, leading to potential segmentation uncertain-

ties caused by mis-registration. Unfortunately, unlike DL applications for natural images, 

access to medical images for training and evaluating algorithms is restricted due to patient 

data privacy and labor-intensive ground-truth contour definitions. Therefore, research 

motivation and technology development from the wider ML community with limited ac-

cess to adequately large in-house repositories may be consequently hindered. We demon-

strated in this review that, although partially due to higher prostate cancer prevalence and 

appetite for research, the introduction of grand MRI segmentation challenges and pub-

licly-accessible datasets has played an important role in driving prostate cancer research 

forward. Regrettably, to the best of our knowledge, there are no public and annotated 

repositories for other pelvic cancer types (MRI or CT) and RT target volumes. Whilst 

global and institutional efforts are necessary to initiate public repositories, appropriate 

quality control and external expert auditing need to be in place to ensure data are of high 

quality [179,180]. 

The generalizability of DL algorithms can be enhanced by use of multi-vendor and 

multi-center patient scans for training, however differences in institutional MR imaging 

protocols may adversely affect segmentation performances. A wide range of DL-based 

techniques were reviewed in this study that generally proposed architectural, image pro-

cessing, multi-parametric data entry, loss functions, transfer learning and adversarial 

training extensions to FCNs which have become the standard model in medical segmen-

tation applications. Researchers routinely use quantitative segmentation evaluation met-

rics such as DSC and HD to compare their results with other proposed algorithms. Alt-

hough it may be tempting to rely on these measures to draw definitive conclusions on an 

algorithm’s performance superiority over another, qualitative assessment of results by ex-

perts is necessary to ensure clinical demands are met. Moreover, contour definition by 

experts (radiologist vs. radiation oncologist) with varying clinical experience and the 

source of training data (single institution vs. multi-center) are other contributing factors 

to variabilities in ground-truth ROI delineations which can hamper segmentation perfor-

mance. Some studies incorporated qualitative evaluations to assess the clinical acceptance 

rate of generated contours [96], however this step is not yet widely undertaken for most 

pelvic cancer segmentation applications. Based on the reviewed articles, the MRI acquisi-

tion mode (2D or 3D) for 5 studies were labelled as ‘unspecified' since insufficient acqui-

sition information was provided for training MR images. Furthermore, lack of external 

validation on public datasets provides a considerable challenge in accurately comparing 

various algorithms for segmentation applications. 

In conclusion, DL in the eyes of clinicians is still seen as a “black box algorithm” due 

to its limited interpretability for predicted outcome. Therefore, clinical adoption of AI-

based frameworks is hindered by their lack of interpretability and explainability when 

generating inaccurate outcomes. Although DL is a powerful and promising tool for many 

supervised computer-aided applications, it heavily relies on the quality of input data for 

training. With absence of standardized and international contouring consensus guidelines 

to reduce segmentation variabilities, and lack of accessible and annotated public data-

bases, there remains a formidable challenge for true investigation of novel segmentation 

techniques against existing algorithms. Our review demonstrated the challenges, incen-

tives and public datasets can lead to research contribution from groups from different 

domains and considerable advancements in technology. Lastly, whilst embracing the ex-

citing future of DL as a catalyst for paradigm shift in disease detection, characterization 

and treatment planning, researchers and clinicians should be aware of the current 
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shortcomings and requirements of automatic pelvic segmentation algorithms in order to 

push the boundaries of AI in healthcare. 
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