Preprint
Article

This version is not peer-reviewed.

Self-Organized Criticality of Traffic Flow: There is Nothing Sweet about the Sweet Spot

A peer-reviewed article of this preprint also exists.

Submitted:

08 September 2021

Posted:

09 September 2021

Read the latest preprint version here

Abstract
This paper shows that the kinematic wave model exhibits self-organized criticality when initialized with random initial conditions around the critical density. A direct consequence is that conventional traffic management strategies seeking to maximize the flow may be detrimental as they make the system more unpredictable and more prone to collapse. Other implications for traffic flow in the capacity state are discussed, such as: \item jam sizes obey a power-law distribution with exponents 1/2, implying that both its mean and variance diverge to infinity, and therefore traditional statistical methods fail for prediction and control, \item the tendency to be at the critical state is an intrinsic property of traffic flow driven by our desire to travel at the maximum possible speed, \item traffic flow in the critical region is chaotic in that it is highly sensitive to initial conditions, \item aggregate measures of performance are proportional to the area under a Brownian excursion, and therefore are given by different scalings of the Airy distribution, \item traffic in the time-space diagram forms self-affine fractals where the basic unit is a triangle, in the shape of the fundamental diagram, containing 3 traffic states: voids, capacity and jams. This fractal nature of traffic flow calls for analysis methods currently not used in our field.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated