Preprint
Article

This version is not peer-reviewed.

Self-Organized Criticality of Traffic Flow

A peer-reviewed article of this preprint also exists.

Submitted:

03 August 2021

Posted:

05 August 2021

Read the latest preprint version here

Abstract
This paper shows that the kinematic wave model exhibits self-organized criticality when initialized with random initial conditions around the critical density. This has several important implications for traffic flow in the capacity state, such as: \item jam sizes obey a power law distribution with exponents 1/2, implying that both the mean and variance diverge to infinity, \item self-organization is an intrinsic property of traffic flow models in general, independently of other random perturbations, \item this critical behavior is a consequence of the flow maximization objective of traffic flow models, which can be observed on a density range around the critical density that depends on the length of the segment, \item typical measures of performance are proportional to the area under a Brownian excursion, and therefore are given by different scalings of the Airy distribution, \item traffic in the time-space diagram forms self-affine fractals where the basic unit is a triangle, in the shape of the fundamental diagram, containing 3 traffic states: voids, capacity and jams.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated