Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Debonding Failure Analysis of Reinforced Concrete Beams Strengthened with CFRP Plates

Version 1 : Received: 27 July 2021 / Approved: 29 July 2021 / Online: 29 July 2021 (13:57:58 CEST)

A peer-reviewed article of this Preprint also exists.

Thamrin, R.; Zaidir, Z.; Desharma, S. Debonding Failure Analysis of Reinforced Concrete Beams Strengthened with CFRP Plates. Polymers 2021, 13, 2738. Thamrin, R.; Zaidir, Z.; Desharma, S. Debonding Failure Analysis of Reinforced Concrete Beams Strengthened with CFRP Plates. Polymers 2021, 13, 2738.

Journal reference: Polymers 2021, 13, 2738
DOI: 10.3390/polym13162738

Abstract

In this study, experimental work was carried out on reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymers (CFRP) plates. This study aims to examine the effect of the reinforcement ratio on the flexural behavior of these beams and propose a new model for predicting the debonding moment. Six RC beams consisting of three control beams and three beams strengthened with CFRP plates were tested. The beams were simply supported and loaded with four-point bending. The test variable was the tensile reinforcement ratio (1%, 1.5%, and 2.5%). Analytical prediction using the fiber element method was also carried out to obtain the complete theoretical response of the beam due to flexural loads. The test results show that the reinforcement ratio affected the bending performance of RC beams with CFRP plates. Following this, the experimental data from 60 beam test results from published literature and this study were analyzed. From these data, it was found that the ratio of tensile reinforcement, the ratio of modulus of elasticity of concrete, the modulus of elasticity of the plate, and plate thickness all affect the value of debonding moment. A parametric study using fiber element and two-dimensional finite element method was also carried out to confirm the effect of these parameters on debonding failure. These parameters were then used to develop an equation to predict the debonding moment of RC beams strengthened with CFRP plates using simple statistical analysis. This analysis resulted in a simple model for predicting the debonding moment. Then the model is entered into a computer program, and the complete response of the cross-section due to debonding failure can be obtained.

Keywords

Debonding load; CFRP plate; RC beams; flexural strengthening; simple statistical analysis; fiber element method

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.