Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Coastal Boulder Dynamics Inferred from Multi-Temporal Satellite Imagery, Geological and Meteorological Investigations in Southern Apulia, Italy

Version 1 : Received: 24 June 2021 / Approved: 25 June 2021 / Online: 25 June 2021 (10:12:06 CEST)

A peer-reviewed article of this Preprint also exists.

Delle Rose, M.; Martano, P.; Orlanducci, L. Coastal Boulder Dynamics Inferred from Multi-Temporal Satellite Imagery, Geological and Meteorological Investigations in Southern Apulia, Italy. Water 2021, 13, 2426. Delle Rose, M.; Martano, P.; Orlanducci, L. Coastal Boulder Dynamics Inferred from Multi-Temporal Satellite Imagery, Geological and Meteorological Investigations in Southern Apulia, Italy. Water 2021, 13, 2426.

Abstract

Boulder dynamics may provide essential data for the coastal evolution and hazards assessment and can be focused as a proxy for the onshore effect of intense storm waves. In this work, detailed observations of currently available satellite imagery of the Earth surface allowed to identify several coastal boulders displacements in the Southern Apulia coast (Italy), in a period between July 2018 and June 2020. Field surveys confirmed the displacements of several dozens of boulders up to several meters in size, also allowing the determination of the initial position for many of them. Archive weather analyses identified two possible causative storms during the same period, and calculations based on analytical equations are found in agreement with the displacement by storm waves for most of the observed boulders. The results help to give insights about the onshore effect of high storm waves on the coastal hydrodynamics and the possible future flooding hazard in the studied coast.

Keywords

marine weather; characteristic wave height; storm surge; shore platform; overtopping wave; hydrodynamics equation; flooding hazard

Subject

Environmental and Earth Sciences, Atmospheric Science and Meteorology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.