Preprint
Article

This version is not peer-reviewed.

Shifts in Sodic Soil Bacterial Communities Associated With Different Alkali Vegetation Types

A peer-reviewed article of this preprint also exists.

Submitted:

18 June 2021

Posted:

22 June 2021

You are already at the latest version

Abstract
In this study, we examined the effect of salinity and alkalinity on the metabolic potential and taxonomic composition of microbiota inhabiting the sodic soils at different plant communities. The soil samples were collected in the Pannonian steppe (Hungary, Central Europe) under extreme dry and wet weather conditions. The metabolic profiles of microorganisms were analysed by MicroResp method, the bacterial diversity was assessed by cultivation and next generation amplicon sequencing based on the 16S rRNA gene. Catabolic profiles of microbial communities varied primarily according to the alkali vegetation types. Most members of the strain collection were identified as plant associated and halophilic/alkaliphilic species of Micrococcus, Nesterenkonia, Nocardiopsis, Streptomyces (Actinobacteria) and Bacillus, Paenibacillus (Firmicutes) genera. Based on the pyrosequencing data, the relative abundance of phyla Proteobacteria, Actinobacteria, Acidobacteria, Gemmatimonadetes and Bacteroidetes changed also mainly with the sample types, indicating distinctions within the compositions of bacterial communities according to the sodic soil alkalinity-salinity gradient. The effect of weather extremes was the most pronounced in the relative abundance of phyla Actinobacteria and Acidobacteria. The type of alkali vegetation caused greater shifts in both the diversity and activity of sodic soil microbial communities than the extreme aridity and moisture.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated