Preprint
Article

This version is not peer-reviewed.

Robustness of Imputation Methods with Backpropagation Algorithm in Nonlinear Multiple Regression

Submitted:

17 May 2021

Posted:

17 May 2021

You are already at the latest version

Abstract
Missing observations constitute one of the most important issues in data analysis in applied research studies. The magnitude and their structure impact parameters estimation in the modeling with important consequences for decision-making. This study aims to evaluate the efficiency of imputation methods combined with the backpropagation algorithm in a nonlinear regression context. The evaluation is conducted through a simulation study including sample sizes (50, 100, 200, 300 and 400) with different missing data rates (10, 20, 30 40 and 50%) and three missingness mechanisms (MCAR, MAR and MNAR). Four imputation methods (Last Observation Carried Forward, Random Forest, Amelia and MICE) were used to impute datasets before making prediction with backpropagation. 3-MLP model was used by varying the activation functions (Logistic-Linear, Logistic-Exponential, TanH-Linear and TanH-Exponentiel), the number of nodes in the hidden layer (3 - 15) and the learning rate (20 - 70%). Analysis of the performance criteria (R2, r and RMSE) of the network revealed good performances when it is trained with TanH-Linear functions, 11 nodes in the hidden layer and a learning rate of 50%. MICE and Random Forest were the most appropriate for data imputation. These methods can support up to 50% of missing rate with an optimal sample size of 200.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated