Preprint
Review

Data Integration in Logic-based Models of Biological Mechanisms

This version is not peer-reviewed.

Submitted:

07 May 2021

Posted:

10 May 2021

Read the latest preprint version here

A peer-reviewed article of this preprint also exists.

Abstract
Discrete, logic-based models are increasingly used to describe biological mechanisms. Initially introduced to study gene regulation, these models evolved to cover various molecular mechanisms, such as signalling, transcription factor cooperativity, and even metabolic processes. The abstract nature and amenability of discrete models to robust mathematical analyses make them appropriate for addressing a wide range of complex biological problems. Recent technological breakthroughs have generated a wealth of high throughput data. Novel, literature-based representations of biological processes and emerging machine learning algorithms offer new opportunities for model construction. Here, we review recent efforts to incorporate omic data into logic-based models and discuss critical challenges in constructing and analysing integrative, large-scale, logic-based models of biological mechanisms.
Keywords: 
Logic-based models; Boolean models; executable models; qualitative dynamical modelling; omic data integration; in silico simulations; formal verification
Subject: 
Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

351

Views

553

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated