Preprint
Article

This version is not peer-reviewed.

Modelling Using Machine Learning Models and Prediction of Monthly Global Irradiation

A peer-reviewed article of this preprint also exists.

Submitted:

23 March 2021

Posted:

23 March 2021

You are already at the latest version

Abstract
Different machine learning models (multiple linear regression, vector support machines, artificial neural networks and random forests) are applied to predict the monthly global irradiation (MGI) from different input variables (latitude, longitude and altitude of meteorological station, month, average temperatures, among others) of different areas of Galicia (Spain). The models were trained, validated and queried using data from three stations, and each best machine model was checked in two independent stations. The results obtained confirmed that the best ML methodology is the ANN model which presents the lowest RMSE value in the validation and querying phases 122.6·10kJ/(m2∙day) and 113.6·10kJ/(m2∙day), respectively, and predict conveniently for independent stations, 201.3·10kJ/(m2∙day) and 209.4·10kJ/(m2∙day), respectively. Given the good results obtained, it is convenient to continue with the design of artificial neural networks applied to the analysis of monthly global irradiation.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated