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Abstract: Different machine learning models (multiple linear regression, vector support machines, 
artificial neural networks and random forests) are applied to predict the monthly global irradiation 
(MGI) from different input variables (latitude, longitude and altitude of meteorological station, 
month, average temperatures, among others) of different areas of Galicia (Spain). The models were 
trained, validated and queried using data from three stations, and each best machine model was 
checked in two independent stations. The results obtained confirmed that the best ML methodology 
is the ANN model which presents the lowest RMSE value in the validation and querying phases 
122.6·10kJ/(m2·day) and 113.6·10kJ/(m2·day), respectively, and predict conveniently for independent 
stations, 201.3·10kJ/(m2·day) and 209.4·10kJ/(m2·day), respectively. Given the good results obtained, 
it is convenient to continue with the design of artificial neural networks applied to the analysis of 
monthly global irradiation. 

Keywords: prediction; solar irradiation; machine learning; artificial neural network; random forest; 
vector support machine. 
 

1. Introduction 
The introduction should briefly place the study in a broad context and highlight why 

it is important. It should define the purpose of the work and its significance. The current 
state of the research field should be carefully reviewed and key publications cited. Please 
highlight controversial and diverging hypotheses when necessary. Finally, briefly men-
tion the main aim of the work and highlight the principal conclusions. As far as possible, 
please keep the introduction comprehensible to scientists outside your particular field of 
research. References should be numbered in order of appearance and indicated by a nu-
meral or numerals in square brackets—e.g., [1] or [2,3], or [4–6]. See the end of the docu-
ment for further details on references. 

Solar radiation exerts its influence over all Earth’s processes related to the environ-
ment, plant growing and even over the human activities development [1]. At ground level, 
the solar radiation data are important for a large number of applications related to agri-
cultural hydrology, plant growth and others [1]. Besides these, global solar irradiation is 
a significant parameter in renewable energy applications (for example to determine size 
and model photovoltaic systems) [2].  

To obtain global solar irradiation data remote measurements can be used using spe-
cific devices [3] which can be limited to a small number of meteorological stations [4], 
probably, due to their high cost and other inconveniences such as calibration and mainte-
nance, [3,5]. Besides this, these data may not be accessible because the meteorological ob-
servatories that include measurement series of solar irradiation are still rarely distributed 
and these data present, sometimes, a problematic spatial interpolation in areas of intricate 
orography [6]. Even, according to some authors, only 1000 continental stations over the 
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world can measure the solar radiation [7,8] although, currently, this number can be prob-
ably higher. 

According to different authors, the shortage, the difficulties and the uncertainties of 
these measurements can be corrected with estimations calculated from other more abun-
dant variables (climatological properties) such as cloudiness, among others [3,6]. 

Take into account the increase in energy demand and consumption worldwide, and 
the search for alternatives to the decrease in fossil fuel reserves [9], it can be understood 
that the determination of the global solar irradiation can be very important in solar energy 
conversion systems. Solar photovoltaic energy has presented an important growth in the 
last years due to their cost reduction [10]. In this energetic context, the Spanish climatic 
conditions can  obtain a high performance using photovoltaic solar energy [11]. Within 
this territory, the Galicia area is suitable for solar installations [9].  

Taking into account all the above, to the design of solar energy conversion systems, 
it is necessary to have solar irradiation monthly average data, and these need to be relia-
bility [6]. Due to this, different techniques have been developed to find a correlation be-
tween solar irradiation and other variables such as relative humidity, air temperature, 
among others [2]. Traditionally, the estimation has been carried out using parametric-em-
pirical models which obtained a relatively high level of certainty [10].  

Possibly, the three principal groups of models used to forecast solar radiation are 
machine learning, physical (or numerical weather prediction) and sky imaging [12].  Ma-
chine learning is an artificial intelligence subfield that studies and develop mathematical 
algorithms intended to comprehend data and obtain data without a prearranged model 
algorithm [13]. The machine learning models can find the relationship between inputs and 
outputs variables, which allow that these models can be used, sometimes, in classification 
problems, forecasting problems, among others [14]. 

Different machine learning models such as linear regression (MLR), support vector 
machines (SVM), artificial neural networks (ANN and random forest (RF) are available to 
prediction purposes. These models can be used in different areas such as: 
 Environmental Science to determine fine particles (PM1) concentration using environ-

mental, meteorological and eventualities variables [15],  
 in Bioinformatics to identify single-nucleotide polymorphisms [16] or to predict dihe-

dral angle regions [17],  
 in food chemistry to model and optimize the pectinase-assisted low-temperature ex-

traction from cashew apple juice [18] or to optimize an enzymatic method to obtain 
modified artichoke pectin and pectic oligosaccharides [19] or  

 in Economics to early prediction of university dropouts [20], among others. 
Related to this study, this machine learning model can be used, together or sepa-

rately, to different purposes. 
 Multiple linear regression models can be used to predict the net radiation using 

weather data of solar radiation, temperature, among others [21].  
 Artificial neural networks have been used to predict the solar irradiation at different 

time windows (hourly, daily and monthly) from different meteorological variables 
(temperature, atmospheric pressure, among others) or even including geographical 
coordinates such as latitude, longitude and altitude [1]. This kind of models can be 
used to determine daily, weekly and monthly global solar radiation in Fortaleza (Bra-
zilian Northeast region) using 14-year-long data set to train three different ANNs 
models [3]. ANNs can also be used to determine different parameters such as the 
global horizontal irradiation (from meteorological data), the global tilted irradiation 
(from the horizontal global irradiation and others) and to forecast the hourly direct 
normal and the global horizontal irradiation from one to six hours horizon [7].  

 Support vector machines models can be used to generate the daily global solar irradi-
ation using a general (non-locally dependent) model [10]. The model (which used 
temperatures, relative humidity, wind speed and rainfall, among other variables) pre-
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sented a high capacity of generalization for the different studied locations and im-
proved, in terms of mean absolute error, the locally trained models in some locations 
[10]. SVM models can even be used to forecast of photovoltaic power [22]. 

 Random forest can be used to estimate the solar radiation using air pollution index in 
three different sites [23] or to forecast solar radiation and compared their result with 
other methods such as multivariate adaptive regression splines (MARS), classification 
and regression tree (CART) and M5 [24]. 
In many research articles, it can be also possible to see comparisons between this kind 

of models to predict solar irradiation and even other interesting variables related to the 
subject under study.  
 MLR and ANN models can be compared in the estimation of monthly-average daily 

solar radiation over different locations in Turkey [25]. Different variables (latitude, 
longitude, altitude, land surface temperature and month) were used as input varia-
bles. According to the authors, the results showed that the ANN model could achieve 
a good performance compared to the MLR model.  

 SVM and ANN models were used in a comparative study of different methods carried 
out by da Silva et al. (2017) to estimate the daily global solar irradiation. Four different 
kinds of architecture combining different input parameters were studied. The first 
model used the fractional daily sunshine duration and the solar radiation at the top 
of the atmosphere, while the other three models were developed adding other varia-
bles one by one (air temperature (maximum and minimum), precipitation and relative 
humidity)  [26]. According to the authors, statistical indicators showed that SVM 
technique has better performance than ANN models for the study location (Botu-
catu/SP/Brazil). Neural models can be compared to random forest models to forecast 
the normal beam, horizontal diffuse and global components [27].  

 SVM, ANN and deep neural network models can even be used to forecast of photo-
voltaic power [22] or to estimate electricity demand (using multiple linear regression, 
artificial neural network and support vector machine) [13]. 

 Random forest models to model the daily variability of solar irradiance can be com-
pared to other methods such as multiple linear regression, obtaining the best results 
between both [28]. 
Therefore, the objective of this research was developed different machine learning 

prediction models (linear regression, artificial neural networks, support vector machines 
and random forest) to model the monthly global irradiation (MGI) from three meteoro-
logical station stations located in the Autonomous Community of Galicia (Spain) and then 
generalize the knowledge to other two nearby stations. This work is a summary of the 
final degree project developed by the first author of this research [29]. 

2. Materials and Methods 

2.1. Study area 
According to Vázquez [30], Galicia can be divided into four climatic zones based on 

their solar radiation. To carried out this research, five meteorological stations were se-
lected, all of them belonging to climatic zone II. This zone is characterized to present 
global radiation values between 13.7 MJ/m2·day (3.8 kWh/m2·day) and 15.1 MJ/m2·day (4.2 
kWh/m2·day) [30]. The selected meteorological stations were: i) Amiudal in the munici-
pality of Avión, ii) Serra do Faro in Rodeiro, iii) Monte Medo in the municipality of Baños 
de Molgas, iv) Ourense-Estacións in the city of Ourense and v) Pazo de Fontefiz in Coles.  
The meteorological stations were selected taking into account the conditions and the 
quantity of available data to create useful and accurate models for the prediction of MGI. 
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2.2. Database 
The database was obtained from Meteogalicia website [31] which provides the mete-

orological data for the selected stations. The periodicity of the data was monthly which 
reduce the volume of handled data and, therefore, the computational cost of modelling. 

The selected variables, in addition to the MGI (10 kJ/(m2·day) were: i) latitude, ii) 
longitude and iii) altitude (m) of the station, iv) month order, v-vii) average, average of 
the maximum and average of the minimum temperatures (ºC); viii-xi) average, average of 
the maximum and average of the minimum relative humidities (%) and xii) precipitation 
(L/m2). 

Three meteorological stations, Amiudal, Serra do Faro and Monte Medo, were used 
to train (2005-2012), validate (2013-2015) and query (2016-2018) the models. The other two 
stations, Ourense-Estacións and Pazo de Fontefiz, were used to check the models' behav-
iour in different locations than the previous ones, that is, the knowledge generated in three 
stations is extrapolated to new locations. In these two stations, the data used includes the 
period between 2012 and 2018. 

2.3. Implementation of models 
As previously stated, four different kinds of models were developed: i) multiple lin-

ear regressions, ii) artificial neural networks, iii) support vector machines and iv) random 
forests. Different combinations of available variables (Table 1) were used to determine the 
MGI and study the influence of the average temperatures, the average relative humidity 
and precipitation. The geographic coordinates and the month of the year were selected for 
all the models. 

 
Table 1. Variables, and their combination, used to develop the dif-
ferent models: i) latitude (Lat), ii) longitude (Long), iii) altitude (Alt), 
iv) month, v-vii) average (Tav), average of the maximum (Tmax) and 
the average of the minimum temperature (Tmin); viii-xi) average 
(HRav), an average of the maximum (HRmax) and the average of the 
minimum (HRmin) relative humidity and xii) precipitation (P). 
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Type 5                    
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Type 7                       

2.4. MLR models 
Multiple linear regression analysis is a conventional method that relates different in-

dependent variables with a dependent one [32]. This method provides a linear input-out-
put model for a specific data set [33]. Unlike the simple regression analysis, MLR analysis 
is closer to real situations because the phenomena are complex and must be explained 
using different variables that intervene in its existence  [34]. 

It can be expressed mathematically as follows (equation 1):  
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𝑦 = 𝛽଴ + 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ +⋯+ 𝛽௡𝑥௡ + 𝜀    (1) 

being y the desired variable, β0 the constant, β1-βn the regression coefficients, x1-xn 
the input variables and ε is the error. 

2.5. ANN models 
Artificial neural networks are a type of artificial intelligence (AI) model that simu-

lates the human brain processes information [35]. ANNs presents different interesting as-
pects such as their error tolerant or their generalization capabilities, among others [36,37]. 

The most used artificial neural models are the multilayer feedforward neural net-
work where the artificial neurons (also called nodes) are distributed into three different 
layers named as input, hidden and output layers [38]. The optimum number of neurons 
in the hidden layer can be determined by trial and error procedure [39–41]. The input 
layer receives the data provided by the user (in our case, the different variables from the 
Meteogalicia meteorological stations). During the model training, these information flow 
within the neural network and makes it possible to adapt the results to the desired value 
modifying weights and biases. This phase is finished when the desired error is reached. 

The ANN model implemented in this research has been tested using different pa-
rameters combination such as i) the number of cycles (1 to 524288 in 19 steps with a loga-
rithmic scale), ii) learning rate (0.1, 0.2 and 0.3), iii) momentum (0.1, 0.2 and 0.3) and decay 
(true or false). 

2.6. SVM models 
Support vector machines were developed in the 1990s, by different authors [42], to 

resolve classification problems and had a great reception and use due to due to its ability 
to deal non-linear data [10]. This method can be also used for regression purposes [13,42]. 
These approximations are a type of linear classifiers, which induce linear or hyperplane 
separators using a kernel function [42].  

A large combination of parameters to develop an SVM model is possible. However, 
to facilitate the development of these models, in this research it has been taken into ac-
count the combination of γ and C, in addition to the SVM type. The range values for γ and 
C were chosen taking into account the “A Practical Guide to Support Vector Classifica-
tion” proposed by Hsu et al. for classification problems [43].  

Therefore, the combination of parameters used for SVM models’ development is i) 
SVM type (ε-SVR and ν-SVR), ii) γ (from 2-15 to 23 in 18 steps, with logarithmic scale) and 
iii) C (from 2-5 to 215 in 20 steps, with logarithmic scale). 

2.7. RF models 
Random forests are non-parametric method proposed in 2001 by Breiman [23,44]. A 

random forest model is a set of random trees that can be used for regression and classifi-
cation [45].  

RF models were implemented using combinations of i) number of trees (1 to 100 in 
99 steps with linear scale), ii) criterion (least square), iii) maximum depth (-1 to 100 in 101 
steps with linear scale) and iv) apply prepruning (true or false). 

2.8. Statistics of the developed models 
The statistics used to analyze the models were the squared correlation coefficient (r2), 

the root mean square error (RMSE, equation 2) and the average absolute relative error 
(Error, equation 3). The best ANN, SVM and RF model was chosen according to the lowest 
RMSE in the validation phase. 
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2.9. Equipment and software used 
The different models were implemented in the server available at the Department of 

Physical Chemistry of the University of Vigo, Campus of Ourense (Intel® Core™ i7-8700 
processor at 3.20 GHz, with 16GB of RAM). All models were run on Windows 10 Pro 64-
bit operating system. Data were collected and processed using the software Microsoft Ex-
cel 2016, from Microsoft Office Professional Plus 2016 package, Microsoft, USA. MLR, 
ANN, SVM and RF models were developed using a Trial/Free version of RapidMiner Stu-
dio 9.0.993 software. Figures were made with SigmaPlot v. 13.0, Systat Software, Inc., 
USA. 

 

3. Results and discussion 
Table 2 show the bests models for each model type and the combination of variables 

used for that model. Next, the best models obtained for each of the studied approaches 
will be described. 

3.1. MLR models 
For the seven MLR models with different combination types, the one that presented 

the worst adjustment, based on the RMSE for the validation phase, was the model with 
combination 7. This model presented an RMSE of 567.4·10kJ/(m2·day) for the validation 
phase, which corresponds to a low r2 (0.468). These bad adjustments for the validation 
phase are extensible to all phases of the model, training and querying. Thus, for these 
phases, the RMSE values are 521.5·10kJ/(m2·day) and 630.0·10kJ/(m2·day) which together 
with the low squared correlation, 0.426 and 0.343, make this model as a model that cannot 
be used for modelling the MGI. The rest of the models present better adjustments than the 
previous model, with RMSE values for the validation phase, between 292.4·10kJ/(m2·day) 
and 241.1·10kJ/(m2·day). These models offer for the querying phase some RMSE similar to 
those provided for the training and/or the validation phase and an average absolute rela-
tive errors between 18.2% and 19.5%. The best MLR model corresponds to a model with 
combination type 1 (Table 2), that is, an MLR that uses all the input available variables to 
model the behaviour of the MGI. 

3.2. ANN models 
The worst ANN model developed was the model with combination type 7. This 

model presented an RMSE value for the validation phase around 152.6·10kJ/(m2·day) 
which corresponds to an average absolute relative error of 12.1%. This value is close to the 
10% that it is considered as a good error percentage for this kind of modelling. The train-
ing a querying phase present similar adjustments to the validation phase with squared 
correlation coefficients of 0.943 and 0.953 for training and validation, respectively. These 
adjustments make the worst ANN model an almost usable model for modelling the MGI, 
however, the other developed combination types clearly improve the worst ANN model, 
presenting RMSE values between 122.6·10kJ/(m2·day) and 149.4·10kJ/(m2·day) for the val-
idation phase. The best ANN model (Table 2) corresponds to a model with combination 
type 4 (input variables; latitude, longitude, altitude, month and the three relative humid-
ity. 
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3.3. SVM models 
For the different SVM models developed, the model that presented the worst adjust-

ment, based on the RMSE for the validation phase, was, again, the model with combina-
tion 7.  It seems clear that in all the models seen, those models that only have the precip-
itation variable, in addition to the other four fixed variables, do not present good results. 
The combination type 7 SVM model presents for validation phase an RMSE of 
170.4·10kJ/(m2·day) which corresponds to a good r2 of 0.956. These adjustments for the 
validation phase are extensible to training and querying phase where the RMSE are 
152.5·10kJ/(m2·day) and 174.3·10kJ/(m2·day) with high squared correlation values, 0.951 
and 0.962 which make this model as a model that could be used for modelling the MGI. 
The rest of the models present better adjustments being the RMSE value in the validation 
phase dropped to 155.6 for the second-best model. The best SVM model corresponds to a 
model with combination type 5, that is, an SVM that uses eight input variables to model 
the MGI response (Table 2). 

3.4. RF models 
Finally, the last kind of ML models is the RF models. In this case, the worst model 

developed for was, unlike the other ML models, a model with combination type 2. This 
model presented an RMSE value for the validation phase around 212.4·10kJ/(m2·day) with 
an average absolute relative error of 15.0%. During the training and the querying phase 
present very different adjustments, 92.5·10kJ/(m2·day) and 165.1·10kJ/(m2·day), respec-
tively. The other combination types slightly improve this model and a better model is 
obtained when the configuration 5 is used (Table 2). 

 
Table 2. Adjustment parameters for each best approximation model developed according to its selected input variables. Latitude 
(Lat), longitude (Long), altitude (Alt), month, average (Tav), average of the maximum (Tmax) and the average of the minimum tem-
perature (Tmin), average (HRav), the average of the maximum (HRmax) and the average of the minimum (HRmin) relative humidity 
and precipitation (P). RMSE is the root mean square error and r2 is the squared correlation coefficient. 
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Type 1 MLR                       226.3 0.892 241.1 0.904 245.8 0.885 
Type 4 ANN                   127.1 0.967 122.6 0.975 113.6 0.980 
Type 5 SVM                    105.6 0.977 153.1 0.961 156.7 0.967 
Type 5 RF                       94.8 0.982 159.5 0.962 227.9 0.933 

3.5. Best models developed 
Taking into account the previously chosen models (Table 2) we will now proceed to 

the analysis as a whole. It can be seen that the RMSE values obtained for the validation 
phase are included between 122.6·10kJ/(m2·day) and 241.1·10kJ/(m2·day).  

According to this, the multiple linear regression model is the one that obtains the 
worst RMSE value in the validation phase with a value of 241.1·10kJ/(m2·day) and the 
worst squared correlation coefficient value (0.904). This model obtained an average abso-
lute relative error around 19.2%. Regarding the training phase, the RMSE presents lower 
value 226.3·10kJ/(m2·day) compared with the validation phase, nevertheless, the Error and 
the r2 values also present lower values (17.3% and 0.892).  

Figure 1-A shows the experimental and modelled MGI values by the MLR model. It 
can be seen how both the training and validation phase cases follow the line with slope 
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one (red line), however, a great dispersion is observed in them, this fact can be intuited by 
the high values of absolute average relative error for both phases (17.3% and 19.2% for 
training and validation, respectively). These high errors are increased by the existence of 
some points that are clearly distant from the line with slope one. 

Given the results shown for both phases, it is expected that the results for the query-
ing phase will also be the worst compared to the rest of the models. The RMSE is greater 
than invalidation phase (245.8·10kJ/(m2·day)) and the adjustments, in terms of squared 
correlation, was the lowest for the three phases (0.885).  

In Figure 1-A it can be seen that the querying cases also follow the line with slope 
one, however, as happened with the cases of the training and validation phases, these do 
not adjust the line, observing the existence of some point that is far away. 

As expected, the MLR model is not capable of learning correctly and then generaliz-
ing that knowledge afterwards. Given the results shown in the three phases, it can be 
concluded that the MLR model is not a suitable model for MGI modelling. A possible 
explanation for the poor adjustments of the MLR model may be based on the use of the 
month variable, which does not present a linear relationship with the MGI. 

The next model in terms of the RMSE value in the validation phase is the RF model 
that presents a value of 159.5·10kJ/(m2·day). This value is clearly improved in the model 
training phase (94.8·10kJ/(m2·day)). In both phases, the RF model clearly improves the 
MLR model, both in RMSE values and in its squared correlation values (0.982 and 0.962 
vs. 0.892 and 0.904, for the training and validation phase, respectively). Besides this, the 
model presents a good behaviour in terms of average absolute relative error.  

Figure 1-B shows the experimental and modelled MGI values by the RF model. It can 
be seen how the training phase; the cases follow better the line with slope one then the 
cases predicted by the MLR. This behaviour is similar for the validation cases. The behav-
iour of both phases is good and reaches the average absolute relative error values of 5.9% 
and 10.5% for training and validation, respectively. 

If we analyze the adjustments for the querying phase it can be seen how the RF model 
presents, for this phase, the worst adjustments in terms of RMSE (227.9·10kJ/(m2·day)) alt-
hough the average absolute relative error remains at similar levels to those of the valida-
tion phase (10.7%).  

In Figure 1-B it can be seen that the querying cases also follow the line with slope 
one, however, a similar dispersion than provided by the MLR model is observed. It can 
be seen some cases that deviate more from the trend line one, although in the area of low 
MGI values it can be seen that the RF model adjusts much better than the MLR model. 
Due to this the average absolute relative error is good (around 10.7%). 

In view of the results shown in the three phases, it can be concluded that the RF 
model is a suitable approach for MGI modelling. 

The second-best model, taking into account the RMSE values in the validation phase, 
is the model developed based on support vector machines. The adjustments for the vali-
dation phase are kept close to the RF model, in fact, the RMSE value for the SVM model 
is 153.1·10kJ/(m2·day) compared to 159.5·10kJ/(m2·day) for the RF model and the squared 
correlation values are the same (0.961 vs. 0962 for SVM and RF, respectively). The same 
happens with the error, which remains for both around 11%. For the training phase, a 
slight worsening of the fit for the SVM model reaching an RMSE of 105.6·10kJ/(m2·day) is 
observed. 

Figure 1-C shows the experimental and modelled MGI values by the SVM model. 
Training and validation phase cases follow the line with slope one (red line) nevertheless 
the model provided worse adjustment for the training cases in comparison with the RF 
model. This may be due to the existence of some points in the middle area that clearly 
move away from the line with slope one. Both phases showed good adjustments is in 
terms of average absolute relative error reaching values of 4.9% and 11.0% for training 
and validation, respectively. 
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Given the results provided by the SVM model, it can be assuming that for the 
querying phase the model will work well. According to the adjustment parameters 
for the querying phase, it can be said that both the RMSE and the r2 values remain 
close to the RMSE of the validation phase. 

 

  

  
 

Figure 1. Graphical representation for the real and modelled values of MGI during the training phase (white dots), validation 
phase (black dots) and querying phase (turquoise triangles) for each select model: A) multiple linear regression -MLR-, B) random 
forest -RF-, C) support vector machine -SVM- and D) artificial neural network -ANN-. Redline is the line with slope one. 

 
Figure 1-C shows the querying behaviour and it can be seen that the cases are close 

to the line with slope one, however, this model provided better fits then the RF model, 
although it can be seen some points in the lower and upper area that stray from the line 
with slope one. 

Taking into account that the model offers 8.7% of absolute average relative error for 
the querying phase, it can be affirmed that the SVM model is a suitable model for MGI 
modelling. 

Finally, for all the models designed, the best model is the ANN model taking into 
account the criterion of the lowest RMSE value in the validation phase. 

This model obtained for validation phase the lower RMSE with a value of 
122.6·10kJ/(m2·day) that corresponds with the highest squared correlation coefficient 
(0.975). Regarding the training phase, the RMSE value is the second lower value 
127.1·10kJ/(m2·day) which supposes an absolute average relative error of 7.3%. 

Figure 1-D shows the experimental and modelled MGI values by the ANN model. It 
can be seen how for the training phase some points distance from the line with slope one. 
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This fact can be explained that the ANN model did not obtain the best adjustments for the 
training phase, in comparison with the SVM and the RF model. This behaviour is reversed 
for the validation phase where it can be seen how this model is the one with the best fits 
to line with slope one. This behaviour is reversed for the validation phase where it can be 
seen how this model is the one with the best fits to line with slope one (obtaining an aver-
age absolute relative error of 8.8%).  

Given the good results provided by the ANN model for both phases, good results for 
the querying are expected. In this case, the RMSE value is lower than in both training and 
validation phases (113.6·10kJ/(m2·day)) and corresponds with a squared correlation of 
0.980 (the highest for all the models in this phase). 

In Figure 1-D it can be seen that the querying behaviour for this model. It can be seen, 
as unlike the other models, the validation cases are very close to the line with slope one. 
Some small dispersion is observed in the area with high MGI values, but this behaviour 
is an exception in the model. 

Finally, taking into account all the adjustments provided by the model and the low 
absolute average relative error for querying phase (6.6%) it can be affirmed that the ANN 
model is a suitable model for the MGI modelling. 

Regarding the variables used by each of the best models, it can be seen in Table 2 that 
all the selected models have as input variables (apart from the latitude, longitude, altitude 
and month) all the variables of relative humidity and precipitation. This fact is only bro-
ken by the ANN model that does not use the precipitation variable. Regarding the MLR 
model, it can be seen how it includes temperature variables among its input variables. The 
inclusion of these variables may be due to the fact that the MLR model, being a linear 
model, does not work properly with non-linear variables, as is the case of the month var-
iable. Due to this fact, the authors understand that this variable can be counteracted by 
the MLR model with the inclusion of temperature variables in the model. 

 
3.6. ANN generalization to different locations 

After analyzing all the machine learning models developed in the previous section it 
will proceed to check how the best models work in the two reserved stations (Pazo de 
Fontefiz in Coles and Ourense-Estacións in Ourense) which have not been used any of the 
previous phases. The adjustments for the best models applied to these stations are pre-
sented in Table 3.  

It can be seen how the support vector machines model is the one that offers worse 
modelling values for both stations; in fact, it presents errors in terms of RMSE much higher 
than the other selected models (Table 3). It can be seen how for the Pazo de Fontefiz station 
the error, in terms of root mean square error, is practically double (402.9·10kJ/(m2·day)) 
that the error presented by the best-selected model; while for the Ourense-Estacións sta-
tion, the error (807.9·10kJ/(m2·day)) is almost four times greater than that presented by the 
best model. As expected, these high errors affect the average relative absolute error pre-
sented by each station, so the Pazo de Fontefiz station presents an error of 24.8%, being 
overcome by the error obtained in Ourense-Estacións, 47.2%.  

The SVM model presents good adjustments in terms of squared correlation (upper 
than 0.940); however, taking into account the adjustments of the root mean square error 
and the average absolute relative error it can be concluded that the SVM model is not a 
suitable model for the MGI modelling.  

The remaining three models have better adjustments than the SVM model. The one 
with the worst fit is the MLR model that presents an error, in terms of root mean square 
error, of 285.2·10kJ/(m2·day) and 233.4·10kJ/(m2·day) for the stations of Pazo de Fontefiz 
and Ourense-Estacións, respectively (Table 3). Compared to the SVM model, this model 
improves its adjustments in terms of RMSE and error, although not in terms of squared 
correlation. The errors of this model are around 19% for each station. According to this 
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error level, we can say that the model shows good behaviour, but shows a higher error 
percentage than desired, especially for the Pazo de Fontefiz station.  

 
Table 3. Adjustment parameters for each of the best models applied to the stations of Pazo de Fontefiz in Coles and Ourense-
Estacións in Ourense. RMSE is the root mean square error, Error is the average absolute relative error (%) and r2 is the squared 
correlation coefficient. 
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MLR 285.2 19.5 0.865 233.4 18.1 0.915 
ANN 201.3 13.1 0.935 209.4 14.7 0.971 
SVM 402.9 24.8 0.949 807.9 47.2 0.971 
RF 246.1 21.2 0.920 216.5 19.6 0.950 

 
The second-best model is the random forest model. This model improves the model-

ling’s of the previous models in terms of RMSE, for each of the analyzed stations, but the 
percentage errors remain high (21.2% and 19.6% for Pazo de Fontefiz and Ourense-Es-
tacións, respectively) (Table 3). Despite that the model presents high squared correlation 
(greater than 0.91), the use of the model should be limited due to the possibility of pre-
senting poor modelling, especially in areas with low MGI. 

Finally, the ANN model, which had been chosen in the previous section as the model 
with the best adjustments for each development phases, has emerged as the model with 
the best predictions for these two independent stations (Table 3). The model improves 
each of the statistics (except r2 for the Pazo de Fontefiz station) for each of the stations, 
reporting errors, in terms of RMSE, around 201.3·10kJ/(m2·day) and 209.4·10kJ/(m2·day) 
for the stations of Pazo de Fontefiz and Ourense-Estacións, respectively. Likewise, for this 
model, the squared correlation is high (0.935 and 0.971) and the average absolute relative 
error remain close to 10% error for each of the stations (which is considered as a good 
error percentage). These good adjustments are reflected in Figure 2. The first thing to note 
is the different size in the database between the two stations. The Pazo de Fontefiz station 
has data from July 2012 to August 2018 (a total of 73 months), while the Ourense-Estacións 
station has data from June 2014 to August 2018 (a total of 49 monthly measurements). 
Figure 2 shows the time series for the real MGI values (olive colour) and the values mod-
elled by the ANN model. 

Figure 2-A shows the time series for the Pazo de Fontefiz station. It can be seen the 
IGM`s cycles time series with their maximums in the summer months and their mini-
mums in the winter months (range from 334·10kJ/(m2·day) to 2605·10kJ/(m2·day)). The 
ANN modellings are shown in the figure as a black line. It can be seen how the modellings 
fit, almost perfectly, to the real-time series, which means (as we have already seen in the 
adjustments) that the ANN model can accurately model the behaviour of the MGI for Pazo 
de Fontefiz station. It can be seen how for the low-value areas of MGI the modelling over-
estimates the values (this happens in the areas of a lower value) while the model behaves, 
in general, well for high-value areas of MGI (although it also some underestimation is 
observed). Given the good adjustments, and from the Figure 2-A modelling time series, 
provided by the ANN model for the Pazo de Fontefiz station, it can be said that this model 
is capable of generalizing the knowledge of the previous phase to other nearby geograph-
ical stations. 
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Figure 2. Real and modelled time series for Pazo de Fontefiz and Ourense-Estacións stations. The olive shade corresponds to the actual 

values, and the black line corresponds to the values modelled by the ANN model. 

 
Figure 2-B shows the time series for the Ourense-Estacións station. In this case, the 

time series has a range from 393·10kJ/(m2·day) to 2647·10kJ/(m2·day). It can be seen how 
the modelling fits the real-time series, however in this case the settings show a worse be-
haviour than in the case of the Pazo de Fontefiz station. Again, it can be seen how for the 
low areas of MGI the modelling overestimate, in general, the MGI values (can even see 
how this behaviour is observed in some measurement in the maximum area) although for 
high MGI the ANN model generally behaves well. Because of the adjustments and the 
Figure 2-B time series, it can be said that the ANN model is usable on other nearby geo-
graphical stations. 

4. Conclusions 
Based on the goodness of statistics, the modelling carried out by MLR, ANN, SVM 

and RF methodologies can predict the variable MGI, generally, in an appropriate way for 
the stations used for its implementation (Amiudal in Avión, Serra do Faro in Rodeiro and 
Monte Medo in Baños de Molgas). The results vary where these models are applied to 
other locations, Pazo de Fontefiz in Coles and Ourense-Estacións in Ourense. Attending 
to the adjustments obtained for each station it can be affirmed that the best model is the 
ANN which presents the lowest RMSE value in the validation and querying phases 
122.6·10kJ/(m2·day) and 113.6·10kJ/(m2·day), respectively, and predict conveniently for 
Coles and Ourense station 201.3·10kJ/(m2·day) and 209.4·10kJ/(m2·day), respectively. 

For all this, it can be concluded that, given the good results obtained, it is convenient 
to continue with the design of artificial neural networks applied to the analysis of monthly 
global irradiation in different areas of the autonomous community of Galicia to obtain a 
general model for the entire region. 

All the models developed in this research could be improved with the inclusion of 
more stations, using different random split datasets, taking into account new meteorolog-
ical input variables, among others. 
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