Preprint
Article

This version is not peer-reviewed.

New Image Recognition Technique for Intuitive Understanding in Class of the Dynamic Response of High-Rise Buildings

A peer-reviewed article of this preprint also exists.

Submitted:

19 March 2021

Posted:

22 March 2021

You are already at the latest version

Abstract
In the last years, more and more studies highlight the advantages of complementing traditional master classes with additional activities that improve students´ learning experience. This combination of teaching techniques is specially advised in the field of structural engineering, where intuition of the structural response it is of vital importance to understand the studied concepts. This paper deals with the introduction of a new (and more encouraging) educational tool to introduce intuitively students in the dynamic response of structures excited with an educational shaking table. Most of the educational structural health monitoring systems use sensors to determine the dynamic response of the structure. The proposed tool is based on a radically different approach, as it is based on low-cost image-recognition techniques. In fact, it only requires the use an amateur camera, a black background and a computer. In this study, the effects of both the camera location and the image quality are also evaluated. Finally, to validate the applicability of the proposed methodology, the dynamic response of small-scale buildings with different typologies is analyzed. In addition, a series of surveys were conducted in order to evaluate the activity based on student´s satisfaction and the actual acquisition and strengthening of knowledge.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated