Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Discrete Element Method Modeling for the Failure Analysis of Dry Mono-Size Coke Aggregates

Version 1 : Received: 13 March 2021 / Approved: 15 March 2021 / Online: 15 March 2021 (13:53:17 CET)

How to cite: Sadeghi Chahardeh, A.; Mollaabbasi, R.; Picard, D.; Taghavi, S.M.; Alamdari, H. Discrete Element Method Modeling for the Failure Analysis of Dry Mono-Size Coke Aggregates. Preprints 2021, 2021030393 (doi: 10.20944/preprints202103.0393.v1). Sadeghi Chahardeh, A.; Mollaabbasi, R.; Picard, D.; Taghavi, S.M.; Alamdari, H. Discrete Element Method Modeling for the Failure Analysis of Dry Mono-Size Coke Aggregates. Preprints 2021, 2021030393 (doi: 10.20944/preprints202103.0393.v1).

Abstract

An in-depth study of the failure of granular materials, which is known as a mechanism to generate defects, can reveal the facts about the origin of the imperfections such as cracks in the carbon anodes. The initiation and propagation of the cracks in the carbon anode, especially the horizontal cracks below the stub-holes, reduce the anode efficiency during the electrolysis process. In order to avoid the formation of cracks in the carbon anodes, the failure analysis of coke aggregates can be employed to determine the appropriate recipe and operating conditions. In this paper, it will be shown that a particular failure mode can be responsible for the crack generation in the carbon anodes. The second-order work criterion is employed to analyze the failure of the coke aggregate specimens and the relationships between the second-order work, the kinetic energy, and the instability of the granular material are investigated. In addition, the coke aggregates are modeled by exploiting the discrete element method (DEM) to reveal the micro-mechanical behavior of the dry coke aggregates during the compaction process. The optimal number of particles required for the failure analysis in the DEM simulations is determined. The effects of the confining pressure and the strain rate as two important compaction process parameters on the failure are studied. The results reveal that increasing the confining pressure enhances the probability of the diffusing mode of the failure in the specimen. On the other hand, the increase of strain rate augments the chance of the strain localization mode of the failure in the specimen.

Subject Areas

Carbon anode production; Crack generation; Discrete element method; Failure analysis; Second-order work criterion; Strain localization

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.