Preprint
Article

This version is not peer-reviewed.

Photophysical, Thermal and Structural Properties of Thiophene and Benzodithiophene-Based Copolymers Synthesized by Direct Arylation Polycondensation Method

A peer-reviewed article of this preprint also exists.

Submitted:

28 February 2021

Posted:

02 March 2021

You are already at the latest version

Abstract
Three low band gap copolymers based on isoindigo acceptor units were designed and successfully synthesized by direct arylation polycondensation method. Two of them were benzodithiophene(BDT)-isoindigo copolymers (PBDTI-OD and PBDTI-DT) with 2-octlydodecyl(OD) and 2-decyltetradecyl (DT) substituted isoindigo units, respectively. Thiophene donor and DT-substituted isoindigo acceptor units were copolymerized to synthesize PTI-DT. The copolymers have broad absorption range that extends to over 760 nm with a band gap ~ .5 eV. The photophysical property studies showed the BDT based copolymers have non-polar ground states. Their emission exhibited the population of intramolecular charge transfer (ICT) state in polar solvents and tightly bound excitonic state in non-polar solvents due to self-aggregation. On the contrary, the emission from the thiophene based copolymers was only from the tightly bound excitonic state. The thermal decomposition temperature of the copolymers was above 380 oC. The X-ray diffraction pattern of the three copolymers showed a halo due pi-pi stacking. A second sharper peak was observed in the BDT-based copolymer with longer side chain on the isoindigo unit (PBDTI-DT) and the thiophene based copolymers with PTI-DT exhibiting a better structural order.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated