Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Decrease of Carbonation, Sulfate and Chloride Ingress due to the Substitution of Cement by 10% of Non Calcined Bentonite

Version 1 : Received: 13 February 2021 / Approved: 17 February 2021 / Online: 17 February 2021 (10:29:10 CET)

A peer-reviewed article of this Preprint also exists.

Andrade, C.; Martínez-Serrano, A.; Sanjuán, M.Á.; Tenorio Ríos, J.A. Reduced Carbonation, Sulfate and Chloride Ingress Due to the Substitution of Cement by 10% Non-Precalcined Bentonite. Materials 2021, 14, 1300. Andrade, C.; Martínez-Serrano, A.; Sanjuán, M.Á.; Tenorio Ríos, J.A. Reduced Carbonation, Sulfate and Chloride Ingress Due to the Substitution of Cement by 10% Non-Precalcined Bentonite. Materials 2021, 14, 1300.

Journal reference: Materials 2021, 14, 1300
DOI: 10.3390/ma14051300

Abstract

Clinker production is being reduced worldwide in response to the need to drastically lower greenhouse gas emissions. The trend began in the nineteen seventies with the advent of mineral additions to replace clinker. Blast furnace slag and fly ash, industrial by-products that were being stockpiled in waste heaps at the time, have not commonly been included in cements. Supply of these additions is no longer guaranteed, however, due to restrained activity in the source industries for the same reasons as in clinker production. The search is consequently on for other additions that may lower pollutant gas emissions without altering cement performance. In this research bentonite, a very common clay, was used as such an addition directly, with no need for pre-calcination, an still novel approach that has gone little explored to date for reinforced concrete with structural applications. The results of the mechanical strength and chemical resistance (to sulfates, carbonation and chlorides) tests conducted are promising. The carbonation findings proved to be of particular interest, for that is the area where cement with mineral additions tend to be least effective. In the bentonite-bearing material analysed here, however, carbonation resistance was found to be low as or lower than observed in plain Portland cement.

Subject Areas

cement; bentonite; durability; clays

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.