Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Discovery of a Major QTL Controlling Trichome IV Density in Tomato using K-seq Genotyping

Version 1 : Received: 18 January 2021 / Approved: 22 January 2021 / Online: 22 January 2021 (12:11:59 CET)

A peer-reviewed article of this Preprint also exists.

Mata-Nicolás, E.; Montero-Pau, J.; Gimeno-Paez, E.; García-Pérez, A.; Ziarsolo, P.; Blanca, J.; van der Knaap, E.; Díez, M.J.; Cañizares, J. Discovery of a Major QTL Controlling Trichome IV Density in Tomato Using K-Seq Genotyping. Genes 2021, 12, 243. Mata-Nicolás, E.; Montero-Pau, J.; Gimeno-Paez, E.; García-Pérez, A.; Ziarsolo, P.; Blanca, J.; van der Knaap, E.; Díez, M.J.; Cañizares, J. Discovery of a Major QTL Controlling Trichome IV Density in Tomato Using K-Seq Genotyping. Genes 2021, 12, 243.

Journal reference: Genes 2021, 12, 243
DOI: 10.3390/genes12020243

Abstract

Trichomes are a common morphological defense against pests, in particular, type IV glandular trichomes have been associated with resistance against different invertebrates. Cultivated tomatoes usually lack or have a very low density of type IV trichomes. Thus, specific breeding programs to incorporate these natural defences, that are common within the Solanum genus, might improve a more sustainable management. We have identified a S. pimpinellifolium accession with very high density of this type of trichomes. Two F2 mapping populations using two different parents have been developed, characterized and genotyped using a new genotype methodology, K-seq. We have been able to build an ultra-dense genetic map with 147,326 markers with an average distance between markers of 0.2 cM that has allowed us to perform a detailed mapping. We have used two different families and two different approaches, QTL mapping and QTL-seq, to identify several QTLs implicated in the control of trichome type IV developed in this accession on the chromosomes 5, 6, 9 and 11. The QTL located on chromosome 9 is a major QTL that has not been previously reported in S. pimpinellifolium that increases by a factor of 9 the density of trichomes.

Subject Areas

Trichome; type IV; K-seq; QTLs mapping; QTL-seq; tomato; Solanum pimpinellifolium

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.