Preprint
Article

This version is not peer-reviewed.

Probabilistic and risk-informed life extension assessment of wind turbines structural components

A peer-reviewed article of this preprint also exists.

Submitted:

15 January 2021

Posted:

18 January 2021

You are already at the latest version

Abstract
Reassessment of the fatigue life for wind turbines structural components is typically performed using deterministic methods with the same partial safety factors as used for the original design. However, in relation to life extension, the conditions are generally different from the assumptions used for calibration of partial safety factors; and using a deterministic assessment method with these partial safety factors might not lead to optimal decisions. In this paper, the deterministic assessment method is compared to probabilistic and risk-based approaches, and the economic feasibility is assessed for a case wind farm. Using the models also used for calibration of partial safety factors in IEC61400-1 ed. 4 it is found that the probabilistic assessment generally leads to longer additional fatigue life than the deterministic assessment method. The longer duration of the extended life can make life extension feasible in more situations. The risk-based model is applied to include the risk of failure directly in the economic feasibility assessment and it is found that the reliability can be much lower than the target for new turbines, without compromising the economic feasibility.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated