Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Synthesis of Hydronium-Potassium Jarosite; Effect of pH and Aging Time on their Structural, Morphological and Electrical Properties

Version 1 : Received: 15 December 2020 / Approved: 16 December 2020 / Online: 16 December 2020 (13:41:15 CET)

A peer-reviewed article of this Preprint also exists.

Hernández-Lazcano, E.; Cerecedo-Sáenz, E.; Hernández-Ávila, J.; Toro, N.; Karthik, T.V.K.; Mendoza-Anaya, D.; Fernández-García, M.E.; Rodríguez-Lugo, V.; Salinas-Rodríguez, E. Synthesis of Hydronium-Potassium Jarosites: The Effect of pH and Aging Time on Their Structural, Morphological, and Electrical Properties. Minerals 2021, 11, 80. Hernández-Lazcano, E.; Cerecedo-Sáenz, E.; Hernández-Ávila, J.; Toro, N.; Karthik, T.V.K.; Mendoza-Anaya, D.; Fernández-García, M.E.; Rodríguez-Lugo, V.; Salinas-Rodríguez, E. Synthesis of Hydronium-Potassium Jarosites: The Effect of pH and Aging Time on Their Structural, Morphological, and Electrical Properties. Minerals 2021, 11, 80.

Journal reference: Minerals 2021, 11, 80
DOI: 10.3390/min11010080

Abstract

Structural and morphological properties of the hydronium-potassium jarosite microstructures were investigated in this work, and their electrical properties were evaluated. All microstructures were synthesized at a reasonable temperature of 343 K with a reduced reaction time of 3 hours. Increase in the pH from 0.8 to 2.1 decreased the particle sized from 3 µm to 200 nm and increasing the aging time from 0, 3 to 7 days resulted in semispherical, spherical and euhedreal jarosite structures, respectively. A Rietveld analysis also was done, finding that increasing pH, the amount of hydronium substitution by potassium in the cationic site also increases, having a 77.72 % of hydronium jarosite (JH) plus 22.29 % potassium jarosite (JK) at pH 0.8; 82.44 % (JH) and 17.56 % (JK) at pH 1.1, and 89.98 % (JH) plus 10.02 % (JK) at pH 2.1. The results obtained in this work show that the obtained hydronium potassium jarosite microstructures with reduced particle size and euhedreal morphology can be used as anode materials for improving the life time of lithium ion batteries, due that during the analysis of the voltage obtained using electrodes made with this particles and graphite, this ranged from 0.89 to 1.36 V.

Subject Areas

Hydronium jarosite; potassium jarosite; micro particles; pH; aging time; energy storage; euhedral morphology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.