Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Enhancing Photocatalytic Activity of ZnO Nanoparticles in a Circulating Fluidized Bed with Plasma Jets

Version 1 : Received: 8 December 2020 / Approved: 9 December 2020 / Online: 9 December 2020 (15:51:59 CET)

A peer-reviewed article of this Preprint also exists.

Ma, S.; Huang, Y.; Hong, R.; Lu, X.; Li, J.; Zheng, Y. Enhancing Photocatalytic Activity of ZnO Nanoparticles in a Circulating Fluidized Bed with Plasma Jets. Catalysts 2021, 11, 77. Ma, S.; Huang, Y.; Hong, R.; Lu, X.; Li, J.; Zheng, Y. Enhancing Photocatalytic Activity of ZnO Nanoparticles in a Circulating Fluidized Bed with Plasma Jets. Catalysts 2021, 11, 77.

Journal reference: Catalysts 2021, 11, 77
DOI: 10.3390/catal11010077

Abstract

In this work, zinc oxide (ZnO) nanoparticles were modified in a circulating fluidized bed through argon and hydrogen (Ar-H) alternative-current (AC) arc plasma, which shows the characteristics of non-equilibrium and equilibrium plasma at the same time. In addition, a circulating fluidized bed with two plasma jets was used for cyclic processing. The catalytic degradation performance on Rhodamine B (Rh B) by Ar-H plasma modified ZnO and pure ZnO was tested in aqueous media to identify the significant role of hydrogen atoms in Rh B degradation mechanism. Meanwhile, the effects of plasma treatment time on the morphology, size and photocatalytic performance of ZnO were also investigated. The results demonstrated that ZnO after 20 minutes-treatment by Ar-H plasma showed Rh B photocatalytic degradation rate is ten times greater than that of pure ZnO, and the reaction follows a first-kinetics for the Rh B degradation process. Furthermore, the photocatalyst cycle experiment curve exhibited that the modified ZnO still displays optimum photocatalytic activity after five cycles of experiment. The improvement of photocatalytic activity and luminescence performance attributes to the significant increase of the surface area, and the introduction of hydrogen atoms on the surface also could enhance the time of carrier existence where the hydrogen atoms act as shallow donors.

Subject Areas

Plasma, zinc oxide, photocatalysis, nanomaterials.

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.