Preprint
Article

This version is not peer-reviewed.

Fast Segmentation Method for Sonar Images Blurred by Noise Reduction

Submitted:

14 October 2020

Posted:

15 October 2020

You are already at the latest version

Abstract
It has remained a hard nut for years to segment sonar images, most of which are noisy images with inevitable blur after noise reduction. For the purpose of solutions to this problem, a fast segmentation algorithm is proposed on the basis of the gray value characteristics of sonar images. This algorithm is endowed with the advantage in no need of segmentation thresholds to be calculated. To realize this goal, it follows the undermentioned steps: first, calculate the gray matrix of the fuzzy image background. After adjusting the gray value, segment the region into the background region, buffer region and target regions. After filtering, reset the pixels with gray value lower than 255 to binarize images and eliminate most artifacts. Finally, remove the remaining noise from images by means of morphological image processing. The simulation results of several sonar images show that the algorithm can segment the fuzzy sonar image quickly and effectively, with no problem of incomplete image target shape. Thus, the stable and feasible method is testified.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated