Preprint Article Version 2 Preserved in Portico This version is not peer-reviewed

Extended General Relativity for a Curved Universe

Version 1 : Received: 15 October 2020 / Approved: 15 October 2020 / Online: 15 October 2020 (11:47:59 CEST)
Version 2 : Received: 18 October 2020 / Approved: 19 October 2020 / Online: 19 October 2020 (10:43:06 CEST)
Version 3 : Received: 5 November 2020 / Approved: 6 November 2020 / Online: 6 November 2020 (13:11:37 CET)
Version 4 : Received: 1 January 2021 / Approved: 4 January 2021 / Online: 4 January 2021 (11:21:08 CET)
Version 5 : Received: 17 June 2021 / Approved: 17 June 2021 / Online: 17 June 2021 (14:08:56 CEST)
Version 6 : Received: 18 November 2021 / Approved: 18 November 2021 / Online: 18 November 2021 (13:17:29 CET)
Version 7 : Received: 14 April 2022 / Approved: 14 April 2022 / Online: 14 April 2022 (12:28:49 CEST)
Version 8 : Received: 6 June 2022 / Approved: 6 June 2022 / Online: 6 June 2022 (12:05:33 CEST)
Version 9 : Received: 10 January 2023 / Approved: 12 January 2023 / Online: 12 January 2023 (02:02:53 CET)

How to cite: Al-Fadhli, M.B. Extended General Relativity for a Curved Universe. Preprints 2020, 2020100320. https://doi.org/10.20944/preprints202010.0320.v2 Al-Fadhli, M.B. Extended General Relativity for a Curved Universe. Preprints 2020, 2020100320. https://doi.org/10.20944/preprints202010.0320.v2

Abstract

The recent Planck Legacy release revealed the presence of an enhanced lensing amplitude in the cosmic microwave background, which endorses the early universe positive curvature with a confidence level exceeding 99%. Although general relativity performs accurately in the present universe where spacetime is almost flat, the necessity of dark matter/energy and the lost boundary term might be signs of its incompleteness. Utilising Einstein–Hilbert action, I present extended field equations considering the pre-existing universal curvatures. The new extended field equations are inclusive of Einstein field equations in addition to the boundary term and the conformal curvature term contributions.

Keywords

General Relativity; Curved Universe

Subject

Physical Sciences, Astronomy and Astrophysics

Comments (1)

Comment 1
Received: 19 October 2020
Commenter: Mohammed Al-Fadhli
Commenter's Conflict of Interests: Author
Comment:
Dear Editor, 

I hope you are doing very well and I do appreciate your continued support

This version includes refining of the mathematical derivations 

Lots of thanks

Kind regards,
Mohammed
+ Respond to this comment

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 1
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.