Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Extended General Relativity for a Curved Universe

Version 1 : Received: 15 October 2020 / Approved: 15 October 2020 / Online: 15 October 2020 (11:47:59 CEST)
Version 2 : Received: 18 October 2020 / Approved: 19 October 2020 / Online: 19 October 2020 (10:43:06 CEST)
Version 3 : Received: 5 November 2020 / Approved: 6 November 2020 / Online: 6 November 2020 (13:11:37 CET)
Version 4 : Received: 1 January 2021 / Approved: 4 January 2021 / Online: 4 January 2021 (11:21:08 CET)
Version 5 : Received: 17 June 2021 / Approved: 17 June 2021 / Online: 17 June 2021 (14:08:56 CEST)
Version 6 : Received: 18 November 2021 / Approved: 18 November 2021 / Online: 18 November 2021 (13:17:29 CET)
Version 7 : Received: 14 April 2022 / Approved: 14 April 2022 / Online: 14 April 2022 (12:28:49 CEST)
Version 8 : Received: 6 June 2022 / Approved: 6 June 2022 / Online: 6 June 2022 (12:05:33 CEST)
Version 9 : Received: 10 January 2023 / Approved: 12 January 2023 / Online: 12 January 2023 (02:02:53 CET)

How to cite: Al-Fadhli, M.B. Extended General Relativity for a Curved Universe. Preprints 2020, 2020100320. https://doi.org/10.20944/preprints202010.0320.v1 Al-Fadhli, M.B. Extended General Relativity for a Curved Universe. Preprints 2020, 2020100320. https://doi.org/10.20944/preprints202010.0320.v1

Abstract

The Planck Legacy recent release revealed the presence of an enhanced lensing amplitude in the cosmic microwave background, which confirms the early universe positive curvature with a confidence level exceeding 99%. Besides, the observed gravitational lensing within several galaxy clusters is higher than that estimated through the standard lambda cold dark matter model by an order of magnitude. While general relativity works perfectly well in the present universe where the spacetime is almost flat, it should be enhanced to account for the pre-existing universal curvature. This study presents new enhanced field equations utilising Einstein–Hilbert action. The enhanced field equations are reduced to Einstein field equations in a flat universe.

Keywords

General Relativity; Curved Universe

Subject

Physical Sciences, Astronomy and Astrophysics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.