Preprint
Article

This version is not peer-reviewed.

Did Biology Emerge from Biotite in Micaceous Clay?

Submitted:

16 September 2020

Posted:

17 September 2020

Read the latest preprint version here

Abstract
An origin of life between the sheets of micaceous clay is proposed to involve the following steps: 1) evolution of metabolic cycles and nucleic acid replication, in separate niches in biotite mica; 2) evolution of protein synthesis on ribosomes formed by liquid-in-liquid phase separation; 3) repeated encapsulation by membranes of molecules required for the metabolic cycles, replication, and protein synthesis; 4) interactions and fusion of the these membranes containing enclosed molecules; resulting eventually in 5) an occasional living cell, containing everything necessary for life. The spaces between mica sheets have many strengths as a site for life’s origins: mechanochemistry and wet-dry cycles as energy sources, an 0.5-nm anionic crystal lattice with potassium counterions (K+), hydrogen-bonding, enclosure, and more. Mica pieces in micaceous clay are large enough to support mechanochemistry from moving mica sheets. Biotite mica is an iron-rich mica capable of redox reactions, where the stages of life’s origins could have occurred, in micaceous clay.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated