Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Evaluation of the Adverse Effects of Chronic Exposure of Donepezil (An Acetylcholinesterase Inhibitor) in Adult Zebrafish by Behavioral and Biochemical Assessments

Version 1 : Received: 16 September 2020 / Approved: 17 September 2020 / Online: 17 September 2020 (07:41:35 CEST)

A peer-reviewed article of this Preprint also exists.

Audira, G.; Ngoc Anh, N.T.; Ngoc Hieu, B.T.; Malhotra, N.; Siregar, P.; Villalobos, O.; Villaflores, O.B.; Ger, T.-R.; Huang, J.-C.; Chen, K. .-C.; Hsiao, C.-D. Evaluation of the Adverse Effects of Chronic Exposure to Donepezil (An Acetylcholinesterase Inhibitor) in Adult Zebrafish by Behavioral and Biochemical Assessments. Biomolecules 2020, 10, 1340. Audira, G.; Ngoc Anh, N.T.; Ngoc Hieu, B.T.; Malhotra, N.; Siregar, P.; Villalobos, O.; Villaflores, O.B.; Ger, T.-R.; Huang, J.-C.; Chen, K. .-C.; Hsiao, C.-D. Evaluation of the Adverse Effects of Chronic Exposure to Donepezil (An Acetylcholinesterase Inhibitor) in Adult Zebrafish by Behavioral and Biochemical Assessments. Biomolecules 2020, 10, 1340.

Journal reference: Biomolecules 2020, 10, 1340
DOI: 10.3390/biom10091340

Abstract

Donepezil (DPZ) is an acetylcholinesterase inhibitor used for the clinical treatment of mild cognitive impairment. However, DPZ has been reported to have adverse effects, including abnormal cardiac rhythm, insomnia, vomiting, and muscle cramps. However, the existence of these effects in subjects without Dementia is unknown. In this study, we use zebrafish to conduct a deeper analysis of the potential adverse effects of DPZ on the short-term memory and behaviors of normal zebrafish by performing multiple behavioral and biochemical assays. Adult zebrafish were exposed to 1 ppm and 2.5 ppm of DPZ. From the results, DPZ caused a slight improvement in the short-term memory of zebrafish and induced significant elevation in aggressiveness, while the novel tank and shoaling tests revealed anxiolytic-like behavior to be caused by DPZ. Furthermore, zebrafish circadian locomotor activity displayed a higher reduction of locomotion and abnormal movement orientation in both low- and high-dose groups, compared to the control group. Biomarker assays revealed that these alterations were associated with an elevation of oxytocin and a reduction of cortisol levels in the brain. Moreover, the significant increases of reactive oxygen species (ROS) and malondialdehyde (MDA) levels in muscle tissue suggest DPZ exposure induced muscle tissue oxidative stress and muscle weakness, which may underlie the locomotor activity impairment. In conclusion, we show, for the first time, that the chronic waterborne exposure of DPZ can severely induce adverse effects on normal zebrafish in a dose-dependent manner. These unexpected adverse effects on behavioral alteration should be carefully addressed in future studies considering DPZ conducted on zebrafish or other animals.

Subject Areas

donepezil; acetylcholinesterase inhibitor; dementia; zebrafish; behavior

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.