Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Modelling and Prediction of Organic Carbon Dynamics in Arable Soils Based on a 62-Year Field Experiment in the Voronezh Region, European Russia

Version 1 : Received: 7 September 2020 / Approved: 8 September 2020 / Online: 8 September 2020 (06:11:53 CEST)

How to cite: Husniev, I.; Romanenkov, V.; Minakova, O.; Krasilnikov, P. Modelling and Prediction of Organic Carbon Dynamics in Arable Soils Based on a 62-Year Field Experiment in the Voronezh Region, European Russia. Preprints 2020, 2020090176 (doi: 10.20944/preprints202009.0176.v1). Husniev, I.; Romanenkov, V.; Minakova, O.; Krasilnikov, P. Modelling and Prediction of Organic Carbon Dynamics in Arable Soils Based on a 62-Year Field Experiment in the Voronezh Region, European Russia. Preprints 2020, 2020090176 (doi: 10.20944/preprints202009.0176.v1).

Abstract

Organic carbon (OC) accumulation in soil mitigates greenhouse gases emission and improves soil health. We aimed to quantify the dynamics of OC stock in soils and to justify technologies that allow annual increasing OC stock in the arable soil layer by 4‰. We based the study on a field experiment established in 1936 in the 9-field crop rotation with a fallow on Chernozem in European Russia. The RothC version 26.3 was used for the reproducing and forecasting OC dynamics. In all fertilizer applications at FYM background, there was a decrease in the OC stock with preferable loss of active OC, except the period 1964-71 with 2-5‰ annual OC increase. The model estimated the annual C input in the arable soil layer as 1,900 kg·ha-1. For increasing OC stocks by 4‰ per year, one should raise input to 2400 kg·ha-1. Simulation was made for 2016-2090 using climate scenarios RCP4.5 and RCP8.5. Crop rotation without fallowing provided an initial increase of 3‰ and 6‰ of stocks in the RCP8.5 and RCP4.5 scenarios accordingly, followed by a loss in accumulated OC. Simulation demonstrates difficulties to increase OC concentration in Chernozems under intensive farming and potential capacity to rise OC stock through yield management.

Subject Areas

soil health; soil organic matter; greenhouse gases; climatic change scenarios; Chernozems; long-term experiment

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.