Preprint
Article

This version is not peer-reviewed.

Generating Fake ECGs using GANs for Anonymizing Healthcare Data

Submitted:

31 August 2020

Posted:

03 September 2020

You are already at the latest version

Abstract
In personalized healthcare, an ecosystem for the manipulation of reliable and safe private data should be orchestrated. This paper describes a first approach for the generation of fake electrocardiograms (ECGs) based on Generative Adversarial Networks (GANs) with the objective of anonymizing users’ information for privacy issues. This is intended to create valuable data that can be used both, in educational and research areas, while avoiding the risk of a sensitive data leakage. As GANs are mainly exploited on images and video frames, we are proposing general raw data processing after transformation into an image, so it can be managed through a GAN, then decoded back to the original data domain. The feasibility of our transformation and processing hypothesis is primarily demonstrated. Next, from the proposed procedure, main drawbacks for each step in the procedure are addressed for the particular case of ECGs. Hence, a novel research pathway on health data anonymization using GANs is opened and further straightforward developments are expected.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated