Preprint
Article

This version is not peer-reviewed.

Characterization of the Common japonica-Originated Genomic Regions in the High Yielding Varieties Developed from Inter-Subspecific Crosses in Rice (Oryza sativa L.)

A peer-reviewed article of this preprint also exists.

Submitted:

23 April 2020

Posted:

24 April 2020

Read the latest preprint version here

Abstract
The inter-subspecific crossing between indica and japonica subspecies in rice have been utilized to improve yield potential in temperate rice. In this study, a comparative study of the genomic regions in the eight high yielding varieties (HYVs) was conducted with those of the four non-HYV varieties. NGS mapping on the Nipponbare reference genome identified a total of 14 common genomic regions of japonica-originated alleles. Interestingly, the HYVs shared the japonica-originated genomic regions on the nine chromosomes, although they were developed from different breeding programs. A panel of 94 varieties was classified into four varietal groups with the 39 SNP markers from 39 genes residing the japonica-originated genomic regions and 16 additional trait-specific SNPs. As expected, the japonica originated genomic regions were present only in JAP and HYV groups with exceptions for Chr4-1 and Chr4-2. The Wx gene located within Chr6-1 was present in HYV and JAP variety groups, while the yield-related genes were conserved as indica alleles in HYVs. The japonica-originated genomic regions and alleles shared by HYVs can be employed in molecular breeding programs for further development of HYVs in rice.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated