Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Performance Results of a Solar Adsorption Cooling and Heating Unit

Version 1 : Received: 24 February 2020 / Approved: 25 February 2020 / Online: 25 February 2020 (11:12:51 CET)

A peer-reviewed article of this Preprint also exists.

Roumpedakis, T.C.; Vasta, S.; Sapienza, A.; Kallis, G.; Karellas, S.; Wittstadt, U.; Tanne, M.; Harborth, N.; Sonnenfeld, U. Performance Results of a Solar Adsorption Cooling and Heating Unit. Energies 2020, 13, 1630. Roumpedakis, T.C.; Vasta, S.; Sapienza, A.; Kallis, G.; Karellas, S.; Wittstadt, U.; Tanne, M.; Harborth, N.; Sonnenfeld, U. Performance Results of a Solar Adsorption Cooling and Heating Unit. Energies 2020, 13, 1630.

Journal reference: Energies 2020, 13, 1630
DOI: 10.3390/en13071630

Abstract

The high environmental impact of conventional methods of cooling and heating has increased the need for renewable energy deployment for covering thermal loads. Towards that direction, the proposed system aims at offering an efficient solar powered alternative, coupling a zeolite-water adsorption chiller with a conventional vapor compression cycle. The system is designed to operate under intermittent heat supply of low-temperature solar thermal energy (<90 °C) provided by evacuated tube collectors. A prototype was developed and tested in cooling mode operation. The results of separate components testing showed that the adsorption chiller was operating efficiently, achieving a maximum coefficient of performance (COP) of 0.65. With respect to the combined performance of the system, evaluated on a typical week of summer in Athens, the maximum reported COP was approximately 0.575, mainly due to the lower driving temperatures at a range of 75 °C. The corresponding mean energy efficiency ratio (EER) obtained was 5.8.

Subject Areas

Solar Cooling; Adsorption; Evacuated tube collectors; Experimental testing

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.