Preprint Article Version 3 Preserved in Portico This version is not peer-reviewed

Insights of Gravitational Phenomena: A Study Applying Thermodynamic Properties of Gases

Version 1 : Received: 28 January 2020 / Approved: 29 January 2020 / Online: 29 January 2020 (10:35:17 CET)
Version 2 : Received: 21 March 2023 / Approved: 21 March 2023 / Online: 21 March 2023 (15:44:21 CET)
Version 3 : Received: 7 March 2024 / Approved: 8 March 2024 / Online: 8 March 2024 (15:31:32 CET)

How to cite: Piyadasa, C. Insights of Gravitational Phenomena: A Study Applying Thermodynamic Properties of Gases. Preprints 2020, 2020010350. https://doi.org/10.20944/preprints202001.0350.v3 Piyadasa, C. Insights of Gravitational Phenomena: A Study Applying Thermodynamic Properties of Gases. Preprints 2020, 2020010350. https://doi.org/10.20944/preprints202001.0350.v3

Abstract

Laboratory experiments and investigations into natural phenomena in this research series have unveiled the presence of a gravitational repulsion force that permeates our environment on both microscopic and macroscopic scales, contingent upon the thermal energy present. This paper presents a study exploring novel properties of gravitational forces among gas molecules, employing principles of thermodynamics. A model has been devised based on the interactions between pairs of gas molecules. While traditional models treat gravitational interaction as a singular force, our experimental approach validates it as the composite of two distinct forces: gravitational repulsion and attraction. By utilizing established experimental data on gas thermodynamics, our model demonstrates robust performance both analytically and experimentally. It verifies the coexistence of gravitational repulsion and attraction forces among gas molecules, showcases their Inverse-Cube relationship with distance, and elucidates the direct proportionality of the repulsion force to absolute temperature. This bridges a crucial gap between energy and fundamental forces. The order of magnitudes of gravitational repulsion and attraction forces are found to be considerably large, contrasting with the low values predicted by classical theory, which results from their amalgamation. Recognizing these forces as substantial in magnitude promises unprecedented outcomes and advancements.

Keywords

gravitational attraction; gravitational repulsion; thermal energy; inverse cube law; thermodynamic properties of gas

Subject

Physical Sciences, Other

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.