Preprint
Article

This version is not peer-reviewed.

Effect of Different Composition on Voltage Attenuation of Li-Rich Cathode Material for Lithium-ion Batteries

A peer-reviewed article of this preprint also exists.

Submitted:

10 December 2019

Posted:

10 December 2019

You are already at the latest version

Abstract
Li-rich layered oxide cathode materials have become one of the most promising cathode materials for high-energy-density lithium-ion batteries owning to its high theoretical specific capacity, low cost, high operating voltage and environmental friendliness. Yet they suffer from severe capacity and voltage attenuation during prolong cycling, which blocks their commercial application. To clarify these causes, we synthesize 0.5Li2MnO3·0.5LiNi0.8Co0.1Mn0.1O2 (LL-811) with high-nickel-content cathode material by a solid-sate complexation method, and it manifests a lot slower capacity and voltage attenuation during prolong cycling compared to LL-111 and LL-523 cathode materials. The capacity retention at 1C after 100 cycles reaches to 87.5% and the voltage attenuation after 100 cycles is only 0.460 V. Combining X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM), it indicates that increasing the nickel content not only stabilizes the structure but also alleviates the attenuation of capacity and voltage. Therefore, it provides a new idea for designing of Li-rich layered oxide cathode materials that suppress voltage and capacity attenuation.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated