Preprint Article Version 1 This version is not peer-reviewed

Xanthomonas Wilt of Banana Drives Changes in Land-use and Ecosystem Services across Infected Landscapes

Version 1 : Received: 18 November 2019 / Approved: 19 November 2019 / Online: 19 November 2019 (10:00:52 CET)

How to cite: Ocimati, W.; Groot, J.; Tittonell, P.; Taulya, G.; Ntamwira, J.; Amato, S.; Blomme, G. Xanthomonas Wilt of Banana Drives Changes in Land-use and Ecosystem Services across Infected Landscapes. Preprints 2019, 2019110226 (doi: 10.20944/preprints201911.0226.v1). Ocimati, W.; Groot, J.; Tittonell, P.; Taulya, G.; Ntamwira, J.; Amato, S.; Blomme, G. Xanthomonas Wilt of Banana Drives Changes in Land-use and Ecosystem Services across Infected Landscapes. Preprints 2019, 2019110226 (doi: 10.20944/preprints201911.0226.v1).

Abstract

Changes in land-use have been observed in banana-based systems in the African Great Lakes region affected by Xanthomonas wilt disease (XW) of banana. Through participatory focus group discussions (FGDs) and the 4-cell method, changes in land-use were retrospectively assessed in 13 XW-affected landscapes/villages along a 230 km transect from Masisi (XW arrived in 2001) to Bukavu (XW arrived around 2014) in eastern Democratic Republic of Congo during 2015. The four-cell chart ranked land-use by mapping the area under production and the number of households involved in production. Farmers’ perceptions on the sustainability of new land-uses were also documented. Soil nutrient content and erosion levels were measured for five major land-use options/ trajectories on 147 fields across 55 farms in three landscapes along the transect. From being ranked the most important crop (92% of landscapes i.e. produced on large areas of land and by many households) before XW outbreaks, its importance had declined with most households in 36% of the landscapes growing it on smaller farms while in 64% of cases by few households on smaller pots. Farmers uprooted entire banana mats or fields, expanding land under other crops, mainly beans, taro, sweet potato, cassava, maize, coffee and eucalyptus. Species richness did not change at landscape level, though 21 crops were introduced at farm level. Land-use for banana is however still perceived to be more sustainable due to its multi-functional roles. Soils under banana plots were found in general to be better in their chemical attributes while high erosion levels (Mg ha-1 year-1) were observed under cassava (1.7-148.9) compared with banana (0.3-10.7) and trees (0.3-5.9). The current shift away from banana could thus have profound effects on supply of key services and sustainability of the production systems. This study offers a good basis/entry point for interventions in the XW-affected landscapes.

Subject Areas

communities; disease; multi-functional; perceptions; soil erosion; uprooting

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.