Deterministic-stochastic empirical mode decomposition (EMD) is used to obtain low-frequency (non-diffusive, i.e., background velocity) and high-frequency (diffusive, i.e., eddies) components from a Lagrangian drifter‘s trajectory. Eddy characteristics are determined from the time series of eddy trajectories from individual Lagrangian drifter such as the eddy radial scale, eddy velocity scale, eddy Rossby number, and eddy-background kinetic energy ratio. A long-term dataset of the SOund Fixing And Ranging float time series obtained near the California coast by the Naval Postgraduate School from 1992 to 2004 at depth between 150 and 600 m (http://www.oc.nps.edu/npsRAFOS/) is used as an example to demonstrate the capability of the deterministic-stochastic EMD.