Preprint
Article

Correlation of Elastic Moduli and Serpentine Content in Ultramafic Rocks

This version is not peer-reviewed.

Submitted:

30 September 2019

Posted:

02 October 2019

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Understanding the physical properties of ultramafic rocks is important for evaluating awide variety of petrologic models of the oceanic lithosphere, particularly upper mantle and lower crust. Hydration of oceanic peridotites results in increasing serpentine content, which affects lithospheric physical properties and the global bio/geochemical cycles of various elements. In understanding tectonic, magmatic and metamorphic history of the oceanic crust, interpreting seismic velocities, rock composition and elastic moduli are of fundamental importance. In this study we show that as serpentine content increases, density decreases linearly with a slope of 7.85. We also correlate increase in serpentine content with a linear decline in shear, bulk and Young’s moduli with slopes of 0.48, 0.77, 0.45 respectively. Our results show that increase in serpentine content of lower crust and forearc mantle could decrease elasticity of lithospehere and result in break-offs. Therefore tectonic processes at peridotite rich slow spreading ridges may be strongly affected by serpentine content, particularly serpentinization may be responsible for discontinuities in thin crust, and formation of weak fault zones.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

257

Views

307

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated