Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Multi-Purpose Nanovoid Array Plasmonic Sensor Produced by Direct Laser Patterning

Version 1 : Received: 28 August 2019 / Approved: 29 August 2019 / Online: 29 August 2019 (05:47:36 CEST)

A peer-reviewed article of this Preprint also exists.

Pavlov, D.V.; Zhizhchenko, A.Y.; Honda, M.; Yamanaka, M.; Vitrik, O.B.; Kulinich, S.A.; Juodkazis, S.; Kudryashov, S.I.; Kuchmizhak, A.A. Multi-Purpose Nanovoid Array Plasmonic Sensor Produced by Direct Laser Patterning. Nanomaterials 2019, 9, 1348. Pavlov, D.V.; Zhizhchenko, A.Y.; Honda, M.; Yamanaka, M.; Vitrik, O.B.; Kulinich, S.A.; Juodkazis, S.; Kudryashov, S.I.; Kuchmizhak, A.A. Multi-Purpose Nanovoid Array Plasmonic Sensor Produced by Direct Laser Patterning. Nanomaterials 2019, 9, 1348.

Abstract

We demonstrate a multi-purpose plasmonic sensor based on nanovoid array fabricated via inexpensive and highly reproducible direct femtosecond laser patterning of thin glass-supported Au films. The proposed nanovoid array exhibits near-IR surface plasmon (SP) resonances, which can be excited under normal incidence and optimised for specific application by tailoring array periodicity as well as nanovoid geometric shape. Fabricated SP sensor offers competitive sensitivity of about 1600 nm/RIU at a figure of merit of 12 in bulk refractive index tests, as well as allows for identification of gases and ultra-thin analyte layers making the sensor particularly useful for common bioassay experiments. Moreover, isolated nanovoids support strong electromagnetic field enhancement at lattice SP resonance wavelength, allowing for label-free molecular identification via surface-enhanced vibration spectroscopy.

Keywords

direct femtosecond laser printing; nanovoid arrays; plasmonic sensors; refractive index and gas sensing

Subject

Physical Sciences, Applied Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.