Preprint
Article

Changes of Conformation in Albumin Protein with Temperature

This version is not peer-reviewed.

Submitted:

06 August 2019

Posted:

07 August 2019

You are already at the latest version

Abstract
We study a conformation of an albumin protein in the temperature range of 300K-315K, i.e. in the physiological range of temperature. Using simulations we calculate values of two backbone angles, that carry most of information about positioning of the protein chain in a conformational space. Given these, we calculate energy components of such protein. Further, using the Flory theory we determine the temperature in which investigated albumin chain model is closest to the free joined chain model. Near the Flory temperature, we study energy components and the conformational entropy, both derived from two angles that reflect most of the chain dynamics in a conformational space. We show that the conformational entropy is an oscillating function of time in considered range of temperature. Our finding is that, the only regular oscillation pattern appears near the Flory temperature.
Keywords: 
conformation of protein; albumin protein; non-gaussian chain
Subject: 
Physical Sciences  -   Biophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

228

Views

309

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated