Preprint
Article

This version is not peer-reviewed.

Logarithmic Space Verifiers on NP-complete

A peer-reviewed article of this preprint also exists.

Submitted:

01 August 2019

Posted:

05 August 2019

Read the latest preprint version here

Abstract
P versus NP is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? A precise statement of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have f ailed. NP is the complexity class of languages defined b y p olynomial t ime v erifiers M su ch th at wh en th e in put is an el ement of the language with its certificate, then M outputs a string which belongs to a single language in P. Another major complexity classes are L and NL. The certificate-based definition of NL is based on logarithmic space Turing machine with an additional special read-once input tape: This is called a logarithmic space verifier. NL is the complexity class of languages defined by logarithmic space verifiers M s uch t hat when t he i nput i s a n e lement o f t he l anguage with i ts c ertificate, th en M outputs 1. To attack the P versus NP problem, the NP-completeness is a useful concept. We demonstrate there is an NP-complete language defined by a logarithmic space verifier M such that when the input is an element of the language with its certificate, then M outputs a s tring which belongs to a single language in L. In this way, we obtain if L is not equal to NL, then P = NP. In addition, we show that L is not equal to NL. Hence, we prove the complexity class P is equal to NP.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated