Article
Version 14
Preserved in Portico This version is not peer-reviewed
Note for the P versus NP Problem
Version 1
: Received: 1 August 2019 / Approved: 5 August 2019 / Online: 5 August 2019 (03:31:23 CEST)
Version 2 : Received: 26 November 2019 / Approved: 29 November 2019 / Online: 29 November 2019 (07:28:14 CET)
Version 3 : Received: 4 April 2020 / Approved: 6 April 2020 / Online: 6 April 2020 (12:57:55 CEST)
Version 4 : Received: 15 April 2020 / Approved: 16 April 2020 / Online: 16 April 2020 (10:17:03 CEST)
Version 5 : Received: 18 September 2020 / Approved: 19 September 2020 / Online: 19 September 2020 (09:51:02 CEST)
Version 6 : Received: 10 February 2021 / Approved: 11 February 2021 / Online: 11 February 2021 (11:56:37 CET)
Version 7 : Received: 19 August 2021 / Approved: 27 August 2021 / Online: 27 August 2021 (14:09:47 CEST)
Version 8 : Received: 20 October 2021 / Approved: 26 October 2021 / Online: 26 October 2021 (11:07:59 CEST)
Version 9 : Received: 7 March 2024 / Approved: 8 March 2024 / Online: 8 March 2024 (11:06:11 CET)
Version 10 : Received: 14 March 2024 / Approved: 14 March 2024 / Online: 14 March 2024 (10:11:13 CET)
Version 11 : Received: 14 March 2024 / Approved: 15 March 2024 / Online: 18 March 2024 (08:29:48 CET)
Version 12 : Received: 29 March 2024 / Approved: 1 April 2024 / Online: 1 April 2024 (17:14:22 CEST)
Version 13 : Received: 6 April 2024 / Approved: 6 April 2024 / Online: 8 April 2024 (06:04:04 CEST)
Version 14 : Received: 11 April 2024 / Approved: 11 April 2024 / Online: 12 April 2024 (04:51:11 CEST)
Version 2 : Received: 26 November 2019 / Approved: 29 November 2019 / Online: 29 November 2019 (07:28:14 CET)
Version 3 : Received: 4 April 2020 / Approved: 6 April 2020 / Online: 6 April 2020 (12:57:55 CEST)
Version 4 : Received: 15 April 2020 / Approved: 16 April 2020 / Online: 16 April 2020 (10:17:03 CEST)
Version 5 : Received: 18 September 2020 / Approved: 19 September 2020 / Online: 19 September 2020 (09:51:02 CEST)
Version 6 : Received: 10 February 2021 / Approved: 11 February 2021 / Online: 11 February 2021 (11:56:37 CET)
Version 7 : Received: 19 August 2021 / Approved: 27 August 2021 / Online: 27 August 2021 (14:09:47 CEST)
Version 8 : Received: 20 October 2021 / Approved: 26 October 2021 / Online: 26 October 2021 (11:07:59 CEST)
Version 9 : Received: 7 March 2024 / Approved: 8 March 2024 / Online: 8 March 2024 (11:06:11 CET)
Version 10 : Received: 14 March 2024 / Approved: 14 March 2024 / Online: 14 March 2024 (10:11:13 CET)
Version 11 : Received: 14 March 2024 / Approved: 15 March 2024 / Online: 18 March 2024 (08:29:48 CET)
Version 12 : Received: 29 March 2024 / Approved: 1 April 2024 / Online: 1 April 2024 (17:14:22 CEST)
Version 13 : Received: 6 April 2024 / Approved: 6 April 2024 / Online: 8 April 2024 (06:04:04 CEST)
Version 14 : Received: 11 April 2024 / Approved: 11 April 2024 / Online: 12 April 2024 (04:51:11 CEST)
A peer-reviewed article of this Preprint also exists.
Vega, F. Note for the P versus NP Problem. IPI Letters 2024, 14–18, doi:10.59973/ipil.92. Vega, F. Note for the P versus NP Problem. IPI Letters 2024, 14–18, doi:10.59973/ipil.92.
Abstract
P versus NP is considered as one of the most fundamental open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? It was essentially mentioned in 1955 from a letter written by John Nash to the United States National Security Agency. However, a precise statement of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. Another major complexity class is NP-complete. It is well-known that P is equal to NP under the assumption of the existence of a polynomial time algorithm for some NP-complete. We show that the Monotone Weighted Xor 2-satisfiability problem (MWX2SAT) is NP-complete and P at the same time. Certainly, we make a polynomial time reduction from every directed graph and positive integer k in the K-CLOSURE problem to an instance of MWX2SAT. In this way, we show that MWX2SAT is also an NP-complete problem. Moreover, we create and implement a polynomial time algorithm which decides the instances of MWX2SAT. Consequently, we prove that P = NP.
Keywords
Complexity classes; boolean formula; graph; completeness; polynomial time
Subject
Computer Science and Mathematics, Computer Science
Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Comments (0)
We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.
Leave a public commentSend a private comment to the author(s)
* All users must log in before leaving a comment