Preprint
Article

This version is not peer-reviewed.

Approximate and Situated Causality in Deep Learning

A peer-reviewed article of this preprint also exists.

Submitted:

05 July 2019

Posted:

08 July 2019

You are already at the latest version

Abstract
Causality is the most important topic in the history of Western Science, and since the beginning of the statistical paradigm, it meaning has been reconceptualized many times. Causality entered into the realm of multi-causal and statistical scenarios some centuries ago. Despite of widespread critics, today Deep Learning and Machine Learning advances are not weakening causality but are creating a new way of finding indirect factors correlations. This process makes possible us to talk about approximate causality, as well as about a situated causality.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated