Preprint
Hypothesis

This version is not peer-reviewed.

Hypothesis: Chemical Activity Regulates and Coordinates the Process Maintaining Glycerophospholipid Homeostasis in Mammalian Cells.

A peer-reviewed article of this preprint also exists.

Submitted:

30 October 2019

Posted:

31 October 2019

You are already at the latest version

Abstract
Mammalian cells maintain the complex glycerophospholipid (GPL) class compositions of their various membranes within close limits because this is essential to their well-being or viability. Surprisingly, however it is still not understood how those compositions are maintained except that GPL synthesis and degradation closely coordinated. Here, we hypothesize that abrupt changes in the chemical activity of the individual GPL classes coordinate the synthesis and degradation, as well other homeostatic processes. A previously proposed model proposed that in cellular membranes only a limited number of “allowed” or optimal GPL glass compositions exist because they are energetically more favorable than the other compositions, i.e. they represent local free energy minima (Somerharju et al. 2009). This model, however, could not satisfactorily explain how the optimal compositions are sensed by the key homeostatic enzymes i.e., the rate-limiting synthetizing enzymes and the degrading enzymes (i.e., homeostatic phospholipases). We now propose that when the mole fraction of a GPL class exceeds an optimal one, its chemical activity abruptly increases, which (i) increases its propensity to efflux from the membrane thus making it susceptible for hydrolysis by homeostatic phospholipases, (ii) increases its potency to inhibit its own biosynthesis via a feedback mechanism, (iii) enhances its conversion to another GPL class via a novel process termed “head group remodeling” or (iv) enhances its translocation to other subcellular membranes. Accordingly, abrupt changes in the chemical activity of the individual GPL classes is proposed to regulate and coordinate those four processes maintaining GPL class homeostasis in mammalian cells.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated