Preprint Article Version 1 This version is not peer-reviewed

Preparation of Thermoplastic Polyurethane (TPU) Perforated Membrane via CO2 foaming and Its Particle Separation Performance

Version 1 : Received: 7 April 2019 / Approved: 8 April 2019 / Online: 8 April 2019 (11:24:16 CEST)

A peer-reviewed article of this Preprint also exists.

Ge, C.; Zhai, W.; Park, C.B. Preparation of Thermoplastic Polyurethane (TPU) Perforated Membrane via CO2 Foaming and Its Particle Separation Performance. Polymers 2019, 11, 847. Ge, C.; Zhai, W.; Park, C.B. Preparation of Thermoplastic Polyurethane (TPU) Perforated Membrane via CO2 Foaming and Its Particle Separation Performance. Polymers 2019, 11, 847.

Journal reference: Polymers 2019, 11, 847
DOI: 10.3390/polym11050847

Abstract

The way in which a perforated structure is formed has attracted much interest in the porous membrane research community. This novel structure gives materials an excellent antifouling property as well as a low operating pressure and other benefits. Unfortunately, the current membrane fabrication methods usually involve multi-step processes and the use of organic solvents or additives. Our study is the first to offer a way to prepare perforated membrane by using a physical foaming technique with CO2 as the blowing agent. We selected thermoplastic polyurethane (TPU) as the base material because it is a biocompatible elastomer with excellent tensility, high abrasion resistance, and good elastic resilience. Various processing parameters, which included the saturation pressure, the foaming temperature, and the membrane thickness, were applied to adjust the TPU membrane’s perforated morphology. We proposed a possible formation mechanism of the perforated membrane. The as-prepared TPU membrane had good mechanical properties with a tensile strength of about 5 MPa and an elongation at break above 100%. Such mechanical properties make this novel membrane usable as a self-standing filter device. In addition, its straight-through channel structure can separate particles and meet different separation requirements.

Subject Areas

thermoplastic polyurethane; foaming; perforated structure; membrane; filtration

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.