Preprint Article Version 1 This version is not peer-reviewed

A Computational Procedure for the Recognition and Classification of Maize Leaf Diseases out of Healthy Leaves Using Convolutional Neural Networks

Version 1 : Received: 19 February 2019 / Approved: 21 February 2019 / Online: 21 February 2019 (13:04:05 CET)

A peer-reviewed article of this Preprint also exists.

Sibiya, M.; Sumbwanyambe, M. A Computational Procedure for the Recognition and Classification of Maize Leaf Diseases Out of Healthy Leaves Using Convolutional Neural Networks. AgriEngineering 2019, 1, 119-131. Sibiya, M.; Sumbwanyambe, M. A Computational Procedure for the Recognition and Classification of Maize Leaf Diseases Out of Healthy Leaves Using Convolutional Neural Networks. AgriEngineering 2019, 1, 119-131.

Journal reference: AgriEngineering 2019, 1, 9
DOI: 10.3390/agriengineering1010009

Abstract

Plant leaf diseases can affect the plants’ leaves to an extent that the plants can collapse and die completely. These diseases may drastically drop the supply of vegetables and fruits to the market, and result in a low agricultural economy. In the literature, different laboratory methods of plant leaf disease detection have been used. These methods were time consuming and could not cover large areas for the detection of leaf diseases. This study infiltrates through the facilitated principles of the Convolutional Neural Networks (CNN) in order to model a network for image recognition and classification of these diseases. Neuroph was used to perform the training of a CNN network that recognized and classified images of the maize leaf diseases that were collected by use of a smart phone camera. A novel way of training and the methodology used, expedite a quick and easy implementation of the system in practice. The developed model was able to recognize 3 different types of maize leaf diseases out of healthy leaves. The Northern Corn Leaf Blight (Exserohilum), Common Rust (Puccinia sorghi) and Gray Leaf Spot (Cerospora) diseases were chosen for this study as they affect most parts of Southern Africa’s maize fields.

Subject Areas

Northern Corn Leaf Blight (Exserohilum); Gray Leaf Spot (Cerospora); Common Rust (Puccinia sorghi); Convolutional Neural Networks (CNN); Neuroph Studio

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.