Preprint
Article

Simultaneous Estimation and Planning for Differential Drive Robot - Technical Report

This version is not peer-reviewed.

Submitted:

06 January 2020

Posted:

07 January 2020

You are already at the latest version

Abstract
Estimation and planning play a vital role in the construction of an autonomous navigation framework. However, these problems are often considered separately, while planning gives robot a free-collision path towards the desired goal, estimation algorithm presents the executed trajectory in the sense that it has to be closed to the ground truth path as much as possible. Recently, a unified probabilistic framework, which supports solving these problems simultaneously, dubbed STEAP has been proposed. Nevertheless, its current version is only designated for an omni wheels robot, which allows robot to move and turn in vertical direction. Differential drive robot, on the other hand, though limited to move along only one direction, has been used in various situations due to its flexibility and lower cost in hardware designing. Thus, in this extension, our aim is to control a differential drive robot via STEAP. Moreover, in a more complicated environment such as labyrinth or maze, the original STEAP sometimes fails to find a path. Indeed, this problem is mainly caused by the poor initialization and the non-linearity in optimizer constraints. In our implementation, instead of dealing with these constraints, we employ a global planner algorithm such as Dijkstra or RRT to treat STEAP as an effective local planner module that focus on following the global path. Consequently, the experimental results show that the extended STEAP not only able to navigate a differential drive robot but also in a more complicated and unstructured environment.
Keywords: 
SLAM; Trajectory Optimization; Motion Planning; Gaussian Process; STEAP; GPMP2; Mobile Robot; Differential Drive Robot
Subject: 
Computer Science and Mathematics  -   Robotics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

823

Views

758

Comments

1

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated