Preprint
Article

Improving Yield Mapping Accuracy Using Remote Sensing

Submitted:

23 January 2019

Posted:

29 January 2019

You are already at the latest version

Abstract
The objective of this work was to investigate the use of remotely sensed vegetation indices to improve the quality of yield maps. The method was applied to the yield data of twelve cornfields from the Data Intensive Farm Management project. The results revealed the need to time shift the yield values up to three seconds to better match the sensor readings with the geographic coordinates. The residuals of the yield prediction model were used to identify points with unlikely yield values for that location, as an alternative to traditional approaches using local spatial statistics, without any assumption of spatial dependence or stationarity. The temporal and spatial distribution of the standardized coefficients for each experimental unit highlighted the presence of trends in the data. At least five out of the twelve fields presented trends that could have been induced by data collection.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

485

Views

731

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated