Nimiritsky, P.P.; Eremichev, R.Y.; Alexandrushkina, N.A.; Efimenko, A.Y.; Tkachuk, V.A.; Makarevich, P.I. Unveiling Mesenchymal Stromal Cells’ Organizing Function in Regeneration. Int. J. Mol. Sci.2019, 20, 823.
Nimiritsky, P.P.; Eremichev, R.Y.; Alexandrushkina, N.A.; Efimenko, A.Y.; Tkachuk, V.A.; Makarevich, P.I. Unveiling Mesenchymal Stromal Cells’ Organizing Function in Regeneration. Int. J. Mol. Sci. 2019, 20, 823.
Cite as:
Nimiritsky, P.P.; Eremichev, R.Y.; Alexandrushkina, N.A.; Efimenko, A.Y.; Tkachuk, V.A.; Makarevich, P.I. Unveiling Mesenchymal Stromal Cells’ Organizing Function in Regeneration. Int. J. Mol. Sci.2019, 20, 823.
Nimiritsky, P.P.; Eremichev, R.Y.; Alexandrushkina, N.A.; Efimenko, A.Y.; Tkachuk, V.A.; Makarevich, P.I. Unveiling Mesenchymal Stromal Cells’ Organizing Function in Regeneration. Int. J. Mol. Sci. 2019, 20, 823.
Abstract
Regeneration is a fundamental process much attributed to functions of adult stem cells. In last decades delivery of suspended adult stem cells is widely adopted in regenerative medicine as a leading mean of cell therapy. However, adult stem cells can not complete the task of human body regeneration effectively by themselves as far as they need a receptive microenvironment (the niche) to engraft and perform properly. Understanding of mechanisms underlying mammalian regeneration lead us to an assumption that improved outcomes of cell therapy requires a specific microenvironment generated in damaged area prior to stem cell delivery. To certain extent it may be achieved by delivery of mesenchymal stromal cells (MSC), not in dispersed form, but rather self-organized in cell sheets (CS) – tissue-like structures comprising of viable cells and microenvironment components: extracellular matrix and soluble factors deposited in the matrix. In this communication we highlight a potential role of mesenchymal stromal cells (MSC) as regeneration organizers and speculate that this function emerges in CS. This concept shifts our understanding of therapeutic mechanism underlying a widely known CS-based delivery method for regenerative medicine.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.