Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Experimental Investigation of Freezing and Melting Characteristics Of Graphene Based Phase Change Nanocomposite for Cold Thermal Energy Storage Applications

Version 1 : Received: 15 January 2019 / Approved: 16 January 2019 / Online: 16 January 2019 (08:33:16 CET)

A peer-reviewed article of this Preprint also exists.

Sidney, S.; D., M.L.; C., S.; Harish, S. Experimental Investigation of Freezing and Melting Characteristics of Graphene-Based Phase Change Nanocomposite for Cold Thermal Energy Storage Applications. Appl. Sci. 2019, 9, 1099. Sidney, S.; D., M.L.; C., S.; Harish, S. Experimental Investigation of Freezing and Melting Characteristics of Graphene-Based Phase Change Nanocomposite for Cold Thermal Energy Storage Applications. Appl. Sci. 2019, 9, 1099.

Abstract

In the present work freezing and melting characteristics of water seeded with chemically functionalized graphene nano-platelets in a vertical cylindrical capsule was experimentally studied. The volume percentage of functionalized graphene nano-platelets was varied from 0.1% to 0.5% with an interval of 0.1%. The stability of the synthesised samples were carried out by zeta potential distribution. The thermal conductivity of the nanocomposite samples were experimentally measured using transient hot wire method. A maximum enhancement of ~24% in the thermal conductivity was observed for the 0.5% volume percentage in the liquid state while a ~53% enhancement in the solid state. Freezing and melting behaviour of water dispersed with graphene nanoplatelets were carried out using a cylindrical stainless steel capsule in a constant temperature bath. The bath temperatures considered for studying freezing characteristics were considered to be −6 °C and −10 °C, while to study the melting characteristics the bath temperature was set as 31 °C and 36 °C. The freezing and melting time decreased for all the test conditions when the volume percentage of GnP increased. The freezing rate was enhanced by ~ 43% and ~32% for the bath temperatures of −6 °C and −10 °C respectively at 0.5 vol % of graphene loading. The melting rate was enhanced by ~42% and ~63% for the bath temperature of 31 °C and 36 °C respectively at 0.5 vol % of graphene loading.

Keywords

nanocomposite; melting; freezing; graphene; thermal conductivity

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.