Preprint
Review

This version is not peer-reviewed.

Computational Intelligence Load Forecasting: A Methodological Overview

A peer-reviewed article of this preprint also exists.

Submitted:

17 December 2018

Posted:

18 December 2018

You are already at the latest version

Abstract
Electricity demand forecasting has been a real challenge for power system scheduling in the different levels of the energy sectors. Various computational intelligence techniques and methodologies have been employed in the electricity market for load forecasting; although, scant evidence is available about the feasibility of each of these methods considering the type of data and other potential factors. This work introduces several scientific, technical rationale behind intelligent forecasting methods, based on the work of previous researchers in the field of energy. The fundamental benefits and main drawbacks of the aforementioned methods are discussed in order to depict the efficiency of each approach in various situations. In the end, a proposed hybrid strategy is represented.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated