Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Highly Sensitive Voltammetric Glucose Biosensor Based on Glucose Oxidase Encapsulated in a Chitosan/Kappa-Carrageenan/Gold Nanoparticle Bionanocomposite

Version 1 : Received: 2 December 2018 / Approved: 6 December 2018 / Online: 6 December 2018 (13:15:35 CET)

A peer-reviewed article of this Preprint also exists.

Rassas, I.; Braiek, M.; Bonhomme, A.; Bessueille, F.; Raffin, G.; Majdoub, H.; Jaffrezic-Renault, N. Highly Sensitive Voltammetric Glucose Biosensor Based on Glucose Oxidase Encapsulated in a Chitosan/Kappa-Carrageenan/Gold Nanoparticle Bionanocomposite. Sensors 2019, 19, 154. Rassas, I.; Braiek, M.; Bonhomme, A.; Bessueille, F.; Raffin, G.; Majdoub, H.; Jaffrezic-Renault, N. Highly Sensitive Voltammetric Glucose Biosensor Based on Glucose Oxidase Encapsulated in a Chitosan/Kappa-Carrageenan/Gold Nanoparticle Bionanocomposite. Sensors 2019, 19, 154.

Abstract

In this work, an enzymatic sensor, based on a bionanocomposite film consisting of a polyelectrolyte complex (PEC) [Chitosan/kappa-carrageenan] doped with gold nanoparticles (AuNPs) encapsulating glucose oxidase (GOD) deposited on a gold electrode (Au) for glucose sensing, is described. Using the electrocatalytic synergy of AuNPs and GOD as a model of enzyme, the variation of the current (µA) as a function of the log of the glucose concentration (log [glucose]), shows 3 times higher sensitivity for the modified electrode (283.9) compared to that of the PEC/GOD modified electrode (93.7), with a detection limit of about 5 µM and a linearity range between 10µM and 7mM. The response of the PEC/AuNPs/GOD based biosensor also presents good reproducibility, stability and negligible interfering effects from ascorbic acid, uric acid, urea and creatinine. The applicability of the PEC/AuNPs/GOD based biosensor was tested in glucose-spiked saliva samples and acceptable recovery rates were obtained.

Keywords

chitosan; kappa-carrageenan; polyelectrolyte complex; gold nanoparticles encapsulation; glucose oxidase; bionanocomposite.

Subject

Chemistry and Materials Science, Polymers and Plastics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.