A finite-difference approach with non-uniform meshes was presented for simulating magnetotelluric responses in 2D structures. We presented the formulation of this scheme and gave some sights into its successful implementation, and compared finite-difference solution with known numerical results and simple analytical solutions. First, a homogeneous half-space model was tested and the finite-difference approach can provide very good accuracy for 2D magnetotelluric modeling. Then we compared to the analytical solutions for the two-layered model, the relative errors of the apparent resistivity and the impedance phase were both increased when the frequency was increased. In the end, we compare our finite-difference simulation results with COMMEMI 2D-0 model with the finite-element solutions. Both results are in close agreement to each other. These comparisons confirm the validity and reliability of our finite-difference algorithm.