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Abstract

A finite-difference approach with non-uniform meshes was presented for simulating magnetotelluric
responses in 2D structures. We presented the formulation of this scheme and gave some sights into its
successful implementation, and compared finite-difference solution with known numerical results and simple
analytical solutions. First, a homogeneous half-space model was tested and the finite-difference approach can
provide very good accuracy for 2D magnetotelluric modeling. Then we compared to the analytical solutions
for the two-layered model, the relative errors of the apparent resistivity and the impedance phase were both
increased when the frequency was increased. In the end, we compare our finite-difference simulation results
with COMMEMI 2D-0 model with the finite-element solutions. Both results are in close agreement to each

other. These comparisons confirm the validity and reliability of our finite-difference algorithm.
Keywords: finite-difference algorithm; magnetotelluric; 2D structures; modeling

1. Introduction
The magnetotelluric method is a passive electromagnetic exploration technique that measures orthogonal
components of the electric and magnetic fields on the Earth’s surface [1]. The source field is naturally generated
by variations in Earth’s magnetic field, which provide a wide and continuous spectrum of electromagnetic field
waves. These fields induce currents into the Earth, which are measured at the surface and contain information
about subsurface resistivity structures. With rapid adavances in modeling and inversion, the magnetotelluric
method has become one of the most important tools for geophysical exploring [2-3].

The magnetotelluric forward modeling aims to solve the frequncy-domain Maxwell’s equations and simulate
the spatial and temporal distribution of electric and magnetic fields in the subsurface for a given conductivity
distribution and a range of frequencies. Numerical modeling approaches such as finite difference (FD), finite

element (FE), have been developed and applied as the process of forward calculation for 2D magnetotelluric
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inversion [4-8]. The FD method based upon the differential form of the partial differential equations to be solved.
Each derivative is replaced with an approximate difference formula and the computational domain is usually
divided into rectangular cells. The efficiency and accuracy of the FD method for modeling magnetotelluric
responses were proven for the 2D geo-electric model [9-10]. The FE method is another numerical technique that is
often used for 2D and 3D magnetotelluric modeling, which involves assumed functional forms for the model and
fields in small regions of specified geometry [11-14]. The FE method is accurate for real-world complex modeling,
especially topography and bathymetry, because of the greater flexibility of mesh discretization. Meanwhile, there
are some different approaches to the numerical approximation of 2D magnetotelluric forward problem [15-18].
There are a lot of good reviews of these methods about their advantages and disadvantages [19-20]. We refer to
them in here for general view on the magetotelluric modeling.

In this paper, a non-uniform meshes approach in FD numerical method was presented for general 2D
magnetotelluric modeling. The main challenge in applying the method for solving the magnetotelluric boundary
value problem is to calculate spatial derivatives. To verify the accuracy of the FD forward algorithm, the resulting

numerical was compared to both an analytical solutions and the FE numerical solutions.

2. Governing equations

2.1. Electromagnetic equations. Considering a right-handed coordinate system, with z-axis pointing downwards

—iot

and x-axis along geologic strike, and assuming time dependence as e and neglecting displacement currents,

Maxwell’s equations can be expressed in the frequency domain as [21]
VxE =iouH , (D

VxH=0cE . 2

where E is electric field and H is magnetic field. ® is an angular frequency (@ =27/T , T'is a period). x is the
magnetic permeability in free space and u =y, =47x107 H/m. o is the electric conductivity in (S/m ) and is
varied only the direction of y-axis and z-axis, i.e., o=0(y,z).

For a 2D conductivity structure assuming the x-axis is the geo-electrical strike direction (i.e., 0E/ox=0 and

OH [ox = 0), expanding the curl operators in equation (1) and equation (2), the governing Maxwell’s equations are

given by
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These two modes are commonly referred to as transverse magnetic (TM) mode and transverse magnetic
electric (TE) mode. We simulate the magnetic field A, (TM-mode) or electric field £, (TE-mode) parallel to
the strike of the conductivity structure. According to equation (3) and equation (4), the associated partial

differential equations can be written as
H H
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According to these relations, the magnetotelluric impedances for the TM and TE modes are

Z =7, =—X, Z =Z,=—x. (7

The associated apparent resistivities and phases can be computed as

Pu =wi#|2i,|2, ji=xp. =, @®)
~ Im(Z,)
¢ij = arctan{Re (Z,j )] . (&)

2.2. Boundary conditions. Within geo-electromagnetic induction we consider fields which change sufficiently
slow, so that their variation in time is negligible compare to the duration of observation. In other words, we are
more interested in their spatial distribution rather than their variation in time. Hence, this kind of forward problem
belongs to boundary value problem, if the mathematical nomenclature is used.

For the TE-mode, the computational domain is composed of both the air space and the earth domain. For the
TM-mode, the magnetic field H_ is nearly unchanged in the air space, so the air space can be eliminated from
the computational domain [22]. To complete the boundary problem of the H-polarization, we must supply the
boundary conditions for the magnetic field component on the outer boundaries. We restrict the computational

domain for equation (5) and equation (6) to 2D bounded domain Q =[y,.., V.. ][z |, as shown in Figure

min Z max
1. The computational domain is reduced to an isolated rectangular block with suitable boundary conditions, Then,
we can divide the boundary of the computational domain Q into four parts expressed as follows:
L= {00 2) Ve <V < Vs 2= Zan > Do =4(052) 200 <2 <2 = Vo | s Ts ={(052) 20 <2 < 2o ¥ = Vi | » and
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boundary conditions on the computational domain.
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FIGURE 1: A sketch of computational domain for modeling 2D magnetotelluric responses.

3. Forward algorithm
3.1. FD representation for 2D magnetotelluric problem. Before we can solve equation (5) and equation (6), it is
necessary to split the investigation area into a mesh with (N, +N_)xN, cells, where N, is the number of
cells in the horizontal direction and N, and N_ denote the number of cells in the vertical direction for the
subsurface and the air, respectively. A resistivity value is assigned to each cell.

The FD approximation is the simplest form of electromagnetic modeling. In order to construct FD scheme
for solving equation (5) and equation (6), non-uniform meshes shown in Figure 2 are constructed. In the

TM-mode, approximation of second-order derivatives for equation (5) can be expressed as
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Substituting equation (10) and equation (11) into equation (5), the difference equation for TM-mode can be
written as

2(0-1',/‘ +O—i+l,/’)(ui+l,/' _ui,/) 2(0—1‘—1,/ +O—i,/)(”i,/ _ui—l,/)
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FIGURE 2: Discretization for 2D geo-electric model with non-uniform meshes.
In the TE-mode, the difference equation resulting from approximation of equation (6) is:
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Therefore, substituting equations (13) and equation (14) into equation (6), the difference equation for

TE-mode can be written as
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The solution vector u, which represents the components H_ or E, for the different mesh nodes, is

rewritten by
U =uy,
U, =u,
u= Ui i(nyt)e) = i > (16)
Unex(npr1)eny = Uz
Uz tpe(np1) = Uzt N+l

Considering boundary conditions of the 2D magnetotelluric forward problem, the resulting linear system of

equations in the form
Ku=s. (17)

gives a numerical solution of equation (5) and equation (6). Where K is the system matrix containing electrical
parameters o , and the right-side column vector s contains information related to boundary conditions. Equation
(17) can be solved by either a direct or iterative solver. Here, we use the direct solver for a sparse matrix in
MATLAB to obtain the solution to equation (17). Finally, the magnetotelluric responses including impedances,
apparent resistivity and phase at each site for each frequency are calculated by equation (8) and equation (9).

The subroutines described here for calculating magnetotelluric responses, given in Appendix 1 and Appendix
2, were developed in MATLAB without MATLAB’s special toolboxes.
3.2. Benchmark with homogeneous half-space. To test the accuracy of our FD method, a homogeneous half-space
model is illustrated for TM-mode. The size of computational domain was designed as 20 km x 5 km. The earth’s
surface was assumed to be flat and homogeneous with a conductivity of 0.1 S/m. We supposed that there is one
magnetotelluric site located on the surface (z=0 km). The magnetotelluric responses of the magnetic field H, are
computed in the frequency range 0.001 to 1000 Hz. The given domain was discretized into many elements and
nodes with non-uniform approach. For information of mesh generation, the number of nodes in y-axis and z-axis
are set as 51 and 41, respectively. The total numbers of nodes generated were 2091.

The results of the homogeneous half-space are shown in Figure 3. It is obvious that the magnetic field H,
including its real part and imaginary part computed by the FD method with non-uniform meshes are good agree
with the analytical solution. The results indicate that our FD approach can provide very good accuracy for 2D

magnetotelluric modeling.
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FIGURE 3: FD solution of magnetic field in homogeneous half-space model.

4. Numerical results

4.1. Comparison of FD results and analytical solutions. The two-layered model is used as an example for the

comparison of FD numerical solution and analytical solution. It is supposed that the resistivity model includes two
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layers. The thickness of the top layer 1 km, and its resistivity is assumed to be 10 ohm-m. For the bottom layer, its
thickness and resistivity are assumed to be 1 km and 100 ohm-m. The size of the model is set as 20 km x 2 km.
The results of the two-layered model are shown in Figure 4. It is obvious that relative errors of the apparent
resistivity and the phase were both increased when the frequency was increased, with the maximum error at the
longest frequency 1000 Hz and the minimum at the shortest frequency 0.001 Hz. At the highest frequency, the
vertical grid spacing size at earth’s surface must be small enough so that the linear approximation of the electric
field is reasonably close to the exponential decay of the electromagnetic fields. Through the numerical examples,

the first vertical mesh size should be suggested approximately 1/3 of the shortest skin depth of the top layer.
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FIGURE 4: Comparison of FD solution and analytical solution for the two-layered model.

4.2. Comparison of FD results and FE solutions. In this section, the reliability of the non-uniform meshes FD
algorithm is confirmed by testing on the COMMEMI 2D-0 model. The COMMEMI 2D-0 model, proposed by
Zhdanov et al. for comparing of modeling methods for electromagnetic induction [23], is illustrated in Figure 5. It
consists of three segments of different conductivities with horizontal contrasts of 1:10 and 2:1, lying on a perfectly

conducting basement.
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FIGURE 5: Schematic drawing of the COMMEMI 2D-0 model.

With a testing frequency of 0.033Hz, the calculated resistivities by the presented FD approach are compared
with the FE solution [7] and the averaged volume integral results from the COMMEMI project [23]. The size of
magnetotelluric domain was designed as 100 km x 100 km. Using the technique of the non-uniform meshes, we
set discrete elements in given domain as 100x80 (i.e. N,=100 and N.=80), and extended 50km to air space for
TE-mode. Figure 6 shows the results of the FD computations along a profile.
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FIGURE 6: Comparison of FD solution and FE solution for the COMMEMI 2D-0 model. The upper figure

displays the apparent resistivity of TM-mode, the lower figure the TE-mode.
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One can see (Figure 6) that the results computed by the FD method and the FE method are in close
agreement to each other. The apparent resistivities do not differ much. Compared to the FE solution, the average
relative error for the apparent resistivity is 0.05, which are in the acceptance limits. Meanwhile, our results were

quite comparable those of the COMMEMI 2D-0 projects.

5. Conclusions

The finite difference method with non-uniform meshes has been adapted to simulate the magnetotelluric responses
of 2D earth conductivity structures. We presented the formulation of this scheme and gave some sights into its
successful implementation. In a first investigation, a homogeneous half-space model was tested and the approach
of non-uniform meshes can provide very good accuracy for 2D magnetotelluric modeling. Compared to the
analytical solutions for the two-layered model, the relative errors of the apparent resistivity and the impedance
phase were both increased when the frequency was increased. Meanwhile, the relative errors were reduced when
the mesh size was reduced. The reason can be attributed that the accuracy of the FD calculation for the apparent
resistivity and the impedance phase depends on the vertical grid spacing size near the surface. Furthermore, we
presented the COMMEMI 2D-0 model in comparison to results derived by the FE calculation. Both results are in

close agreement to each other. These comparisons confirm the validity and reliability of this FD algorithm.
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Appendix 1: MATLAB Program for simulating TE-mode responses

function [Ex,rho_a,phase]=-MT2D TE FDM Nonuniform(dy,dz_ air,dz earth,rho,fre)

% Input arguments
% dy: Mesh size in y direction
% dz_air: Mesh size in z direction (air)

% dz_carth: Mesh size in z direction (earth)

% rho: Mesh resistivity

% fre: Frequency

% Output

% Ex: Electric field

% rho_a: Apparenet resistivity
% phase: Impedance phase
mu=4e-7*pi;

fre=logspace(-3,3,40);
dz=[dz_air dz_earth];
Ny=length(dy);

Nz air=length(dz_air);

Nz _earth=length(dz_earth);

Nz=Nz_air+Nz earth;
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L=sparse(Ny*Nz,Ny*Nz);
R=sparse(Ny*Nz,1);
for nf=1:1:size(fre,2)
% Formed linear equation
% Inner nodes
for i=2:1:Nz-1
for j=2:1:Ny-1
k=(j-1)*Nz+i;
L{k.k-Nz)=4/((dy()+dy(+1))*(dy(-1)+dy()));
L(k k+Nz)=4/((dy()+dy(+1)*(dy()+dy(+1)));
L(k,k-1)=4/((dz(i)+dz(i+1))*(dz(i-1)+dz(i)));
L(k,k+1)=4/((dz(i)+dz(i+1))*(dz(i)+dz(i+1)));
L(k,k)=sqrt(-1)*2*pi*fre(nf)*mu/rho(i,j)-...
(4/((dy()+dyG+1)*(dyG-D+dyG))+...
4((dy()+dyG+1))*(dy()+dyG+1)))-...
(4/((dz(i)+dz(i+1))*(dz(i-1)+dz(i)))+...
4/((dz(i)+dz(i+1))*(dz(i)+dz(i+1))));
R(k,1)=0;
end
end
% Upper boundary
i=1;
for j=1:1:Ny
k=(-1)*Nz+i;
Lk, k)=1;
R(k,1)=1;
end
% Lower boundary
i=Nz;
for j=1:1:Ny
k=(j-1)*Nz+i;
L(k,k)=1/dz(end)+sqrt(-sqrt(-1)*2*pi*fre(nf) *mu*(1/rho(i,))));
L(k,k-1)=-1/dz(end);
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R(k,1)=0;
end
% Left boundary
for i=1:1:Nz
for j=1:1:Ny
k=(j-1)*Nz+i;
if(j==1&&i>1&&i<Nz)
L(k,k)=1;L(k,k+Nz)=-1;
R(k,1)=0;
end
end
end
% Right boundary
for i=1:1:Nz
for j=1:1:Ny
k=(-1)*Nz+i;
if((==Ny&&i>1&&i<Nz)
L(k,k)=1;L(k,k-Nz)=-1;
R(k,1)=0;
end
end
end
% Solving the linear equation
u(:,nf)=L\R;
u=full(u);
u_new(:,:,nf)=reshape(u(:,nf),Nz,Ny);
ul(:,nf)=u_new(Nz air+1,:,nf);
u2(:,nf)=u_new(Nz air+2,:,nf);
u3(:,nf)=u_new(Nz_ air+3,:,nf);
u4(:,nf)=u_new(Nz air+4,:,nf);
for i=1:1:Ny
ux(i,nf)=(-11*ul(i,nf)+18*u2(i,nf)-9*u3(i,nf)+2*u4(i,nf))...
/(2*¥3*dz(Nz_air+1));
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Zyx(i,nf)=ul (i,nf)/((1/(sqrt(-1)*2*pi*fre(nf)*mu))*ux(i,nf));
rho_a(i,nf)=abs(Zyx(i,nf))"2/(2*pi*fre(nf) *mu);
phase(i,nf)=-atan(imag(Zyx(i,nf))/real(Zyx(i,nf)))*180/pi;
end
end

Ex=u_new;

Appendix 2: MATLAB Program for simulating TM-mode responses

function [Hx,tho a,phase]=MT2D TM FDM Nonuniform(dy,dz,rho,fre)
% Input arguments
% dy:  Mesh size in y direction
% dz:  Mesh size in z direction
% rho:  Mesh resistivity
% fre:  Frequency
% Output arguments
% Hx: Magnetic field
% rho a: Apparenet resistivity
% phase: Impedance phase
mu=4e-7*pi;
Ny=length(dy);
Nz=length(dz);
L=sparse(Ny*Nz,Ny*Nz);
R=sparse(Ny*Nz,1);
for nf=1:1:size(fre,2)
% Formed linear equation
% Inner nodes
for i=2:1:Nz-1
for j=2:1:Ny-1
k=(j-1)*Nz+i;
Lk k-Nz)=(tho(ij- 1 rho(i,)) *2/((dy()+dy(-+1)*(dy(-1+dy():
Lk k+N2)=(tho(i+1)+1ho(i)) 2/(dy(HdyG+ D) *(dy(rHdyG+1));
L(k,k-1)=(tho(i-1,j)+rho(i,j))*2/((dz(1)+dz(i+1))*(dz(i-1)+dz(i)));
L(k,k+1)=(rho(i+1,j)+rho(i,j)) *2/((dz(i)+dz(i+1))*(dz(i)+dz(i+1)));

rints201811.0063.v1
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L(k,k)=sqrt(-1)*2*pi*fre(nf)*mu-...
(tho(i,j-1)+rho(i,j)) *2/((dy()+dy(+ 1) *(dy(-1)+dy()))-...
(tho(i,j+1)+rho(i,j))*2/((dy()+dy(i+ 1) *(dy()+dy(+1)))-...
(rtho(i-1,j)+rho(i,)))*2/((dz(i)+dz(i+1))*(dz(i-1)+dz(i)))-...
(rtho(i+1,j)+rho(i,j))*2/((dz(i)+dz(i+1))*(dz(i)+dz(i+1)));
R(k,1)=0;
end
end
% Upper boundary
i=1;
for j=1:1:Ny
k=(-1)*Nz+i;
Lk, k)=1;
R(k,1)=1;
end
% Lower boundary
i=Nz;
for j=1:1:Ny
k=(j-1)*Nz+i;
L(k,k)=1/dz(end)+sqrt(-sqrt(-1)*2*pi*fre(nf) *mu*(1/rho(i,))));
L(k,k-1)=-1/dz(end);
R(k,1)=0;
end
% Left boundary
for i=1:1:Nz
for j=1:1:Ny
k=(j-1)*Nz+i;
if(j==1&&i>1&&i<Nz)
L(k,k)=1;L(k,k+Nz)=-1;
R(k,1)=0;
end
end

end
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% Right boundary
for i=1:1:Nz
for j=1:1:Ny
k=(-1)*Nz+i;
if(=Ny&&i>1&&i1<Nz)
L(k,k)=1;L(k,k-Nz)=-1;
R(k,1)=0;
end
end
end
% Solving the linear equation
u(:,nf)=L\R;
u=full(u);
u_new(:,:,nf)=reshape(u(:,nf),Nz,Ny);
ul(:,nf)=u_new(l,:,nf);
u2(:,nf)=u_new(2,:,nf);
u3(:,nfy=u_new(3,:,nf);
u4(:,nf)=u_new(4,:,nf);
for i=1:1:Ny
ux(i,nf)=(-11*ul(i,nf)+18*u2(i,nf)-9*u3(i,nf)+2*u4(i,nf))/(2*3*dz(1));
Zyx(i,nf)=rho(1,1)*ux(i,nf)/ul (i,nf);
rho_a(i,nf)=abs(Zyx(i,nf))"2/(2*pi*fre(nf) *mu);
phase(i,nf)=-atan(imag(Zyx(i,nf))/real(Zyx(i,nf)))* 180/pi;
end
end

Hx=u_new;
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